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CHAPTER 11

2

BASIC CONCEPTS OF PROBABILISTIC RISK ASSESSMENT (PRA)3
4

1.0 INTRODUCTION5
6

This chapter describes what a probabilistic risk assessment (PRA) is and compares and contrasts it to7
the more familiar point estimate methods described in EPA’s Risk Assessment Guidance for Superfund8
(RAGS) Part A (U.S. EPA, 1989a).  A risk assessment performed using probabilistic methods is very9
similar in concept and approach to the traditional point estimate method, with the main difference being10
the methods used to incorporate variability and uncertainty into the risk estimate.  A variety of modeling11
techniques can be used to characterize variability and uncertainty in risk.  This guidance focuses on12
Monte Carlo analysis (MCA), which is one of the most common probabilistic methods that risk assessors13
will encounter.  Basic concepts on how to use MCA to propagate variability and uncertainty in exposure14
through a risk model are presented.  In addition, the general advantages and disadvantages of both point15
estimate and probabilistic approaches are outlined.  Many of the concepts presented in this guidance are16
applicable to other probabilistic approaches to risk assessment.17

18
At some sites, probabilistic analysis may provide a more complete and transparent characterization of19

the risks and uncertainties in risk estimates than would otherwise be possible with a point estimate20
approach.  However, the decision to conduct a PRA should be made after careful consideration of a21
variety of factors; the main decision points are presented in this chapter.  Developing or reviewing a PRA22
may involve additional time and resources, and a PRA is not necessary or desirable for every site.  The 23
tiered approach presented in this chapter highlights the important scientific and management decisions for24
determining if PRA is appropriate at a specific site.  The decision to perform PRA is best made after the25
Risk Assessor and the Remedial Project Manager at the site determine whether the available information26
will support a PRA and whether a PRA will enhance decision making at the site.  If a PRA is conducted,27
the assumptions and inputs to the probabilistic model should be sufficiently documented so that the results28
can be independently reproduced.  29

30
1.1 BACKGROUND31

32
EPA uses risk assessment (NAS, 1983; 1994) for compliance with the Comprehensive Environmental33

Response, Compensation, and Liability Act (CERCLA), as amended by the Superfund Amendments and34
Reauthorization Act of 1986 (SARA).  Under CERCLA/SARA, EPA’s Superfund Program is authorized35
to protect human health and the environment from current and potential threats posed by uncontrolled36
releases of hazardous substances, pollutants, or contaminants.  The primary regulation issued by the37
Superfund Program is the National Oil and Hazardous Substances Pollution Contingency Plan (NCP)38
(U.S. EPA, 1990).  The NCP calls for the identification and mitigation of environmental impacts at39
hazardous waste sites, and for the selection of remedial actions to protect human health and the40
environment.  An important part of the NCP is the implementation of a Remedial Investigation and41
Feasibility Study (RI/FS), which is designed to support risk management decisions within the Superfund42
Program.  A risk assessment is an integral part of the RI/FS, and is generally conducted at a site to43
determine the need for action and to ensure that a selected remedy will be protective.  To promote44
consistency and science-based approaches, EPA’s Superfund Program has developed guidance on45
human health and ecological risk assessment.  Risk Assessment Guidance for Superfund (RAGS) Volume46
1 Part A (U.S. EPA, 1989a, b) provides guidance on gathering and assessing human health risk47
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information.  Similar guidance is available for implementing a standardized process for ecological risk1
assessment (U.S. EPA, 1997a; 1998a; 1999).  RAGS Volume 1 Part D (U.S. EPA, 1998b) provides2
guidance on the planning, reporting, and review of Superfund risk assessments.3

4
EPA previously issued guidance that addresses the use of quantitative uncertainty analysis in risk5

assessment.  RAGS Volume 1 (U.S. EPA, 1989a) and the Exposure Assessment Guidelines (U.S. EPA,6
1992a) emphasize the importance of assessing variability and uncertainty in risk estimates conducted in7
the Superfund Program.  Guidance is also available for characterizing the 95% upper confidence limit8
(UCL) for the mean exposure concentration (U.S. EPA, 1992b; 1997b).  At the regional level, EPA9
Regions 3 and 8 issued guidance on the appropriate use of probabilistic methods in risk assessment (U.S.10
EPA, 1994a, 1995a).  The importance of adequately characterizing variability and uncertainty is11
addressed in the 1995 memorandum on Risk Characterization Policy and Guidance (U.S. EPA, 1995b). 12
In the spring of 1997, EPA released the memorandum, Use of Probabilistic Techniques (including13
Monte Carlo Analysis) in Risk Assessment (U.S. EPA, 1997c).  According to the Policy Statement of14
the memorandum, probabilistic analysis techniques, “given adequate supporting data and credible15
assumptions, can be viable statistical tools for analyzing variability and uncertainty in risk assessments.” 16
As such, a PRA, “will be evaluated and utilized in a manner that is consistent with other risk assessments17
submitted to the Agency.”  Along with this Policy Statement, the Agency released a set of guiding18
principles for use and review of probabilistic analyses (U.S. EPA, 1997c).  Hence, both RAGS and19
Agency-wide guidance emphasize the importance of review of the scientific and technical merit of a20
probabilistic analysis to determine whether or not the assessment is of sufficient quality to support a21
remedial decision.  This guidance, RAGS Vol. 3, provides risk assessors with comprehensive guidance on22
when and how to conduct PRAs using Monte Carlo analysis within the Superfund Program.23

24
1.2 KEY PRA TERMS - VARIABILITY AND UNCERTAINTY25

26
An essential concept in PRA is the distinction between “variability” and “uncertainty”.  Variability27

refers to true heterogeneity or diversity.  For example, among a population that drinks water from the28
same source and with the same contaminant concentration, the risks from consuming the water may vary. 29
This may be due to differences in exposure (i.e., different people drinking different amounts of water,30
having different body weights, different exposure frequencies, and different exposure durations) as well31
as differences in response (e.g., genetic differences in resistance to a chemical dose).  These inherent32
differences are referred to as variability.  Differences among individuals in a population are referred to33
as inter-individual variability, while differences for one individual over time is referred to as intra-individual34
variability.35

36
Uncertainty occurs because of a lack of knowledge.  It is not the same as variability.  For example, a37

risk assessor may be very certain that different people drink different amounts of water, but may be38
uncertain about how much variability there is in water intakes within the population.  Uncertainty can39
often be reduced by collecting more and better data, while variability is an inherent property of the40
population being evaluated.  Variability can be better characterized with more data, but it cannot be41
reduced or eliminated.  Efforts to clearly distinguish between variability and uncertainty are important for42
both risk assessment and risk communication. 43

44
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EXHIBIT 1-1

DEFINITIONS FOR CHAPTER 1 (part 1 of 2)

Central Tendency Exposure (CTE) - A risk descriptor representing the average or typical individual
in a population, usually considered to be the mean or median of the distribution.

Cumulative Distribution Function (CDF) - Obtained by integrating the PDF, gives the cumulative
probability of occurrence for a random independent variable.  Each value c of the function is
the probability that a random observation x will be less than or equal to c.

Expected Value of Information (EVOI) - The expected increase in the value (or decrease in the
loss) associated with obtaining more information about quantities relevant to the decision
process.  EVOI is a measure of the importance of uncertainty in risk and the potential for
changing a risk management decision if uncertainty is reduced (see Appendix E).

Frequency Distribution or Histogram - A graphic (plot) summarizing the frequency of the values
observed or measured from a population.  It conveys the range of values and the count (or
proportion of the sample) that was observed across that range.

Monte Carlo Analysis (MCA) or Monte Carlo Simulation - A technique for repeatedly sampling from
probability distributions to derive a distribution of outcomes (e.g., risks)

Parameter - In PRA, a parameter is a constant that characterizes the probability distribution of a
random variable.  For example, a normal probability distribution may be defined by two
parameters (e.g., arithmetic mean and standard deviation). 

Point Estimate - In statistical theory, a quantity calculated from values in a sample to estimate a fixed
but unknown population parameter.  Such point estimates typically represent a descriptive
statistic (e.g., arithmetic mean, 95th percentile). 

Point Estimate Risk Assessment - A risk assessment in which a point estimate of risk is calculated
from a set of point estimates for exposure and toxicity.  Such point estimates of risk can
reflect, the CTE, RME, or bounding risk estimate depending on the choice of inputs.  

Probability Density Function (PDF) - A function or graph representing the probability distribution of a
continuous random variable.  The density at a point refers to the probability that the variable
will have a value in a narrow range about that point.  Probability mass function refers to the
probability distribution for a discrete random variable.

Probability Distribution - A mathematical representation of the function that relates probabilities with
specified intervals of values for a random variable.  Also called a probability model.

Probabilistic Risk Assessment (PRA) - A risk assessment that yields a probability distribution for
risk, generally by assigning a probability distribution to represent variability or uncertainty in
one or more inputs to the risk equation.

Uncertainty - Lack of knowledge about specific variables, parameters, models, or other factors (e.g.,
uncertainty regarding the concentration of a contaminant in an environmental medium, local
fish consumption practices).  Uncertainty may be reduced through further study.

1
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EXHIBIT 1-1

DEFINITIONS FOR CHAPTER 1 (part 2 of 2)

Random Variable -A variable that may assume any of a set of values according to chance.  Discrete
random variables assume any value within a finite set of values, whereas continuous random
variables can assume value within an interval.

Reasonable Maximum Exposure (RME) - The highest exposure that is reasonably expected to occur at
a site (U.S. EPA, 1989a).  The intent of the RME is to estimate a conservative exposure case
(i.e., well above the average case) that is still within the range of possible exposures.

Stochastic Dominance - Implies no intersection between the CDFs; distribution A stochastically
dominates distribution B if, for every percentile of the CDF, A > B.  This characteristic may
not be apparent from the PDFs of the distributions, which may overlap.

Variability - True heterogeneity or diversity that characterizes an exposure variable or response in a
population.  Further study (e.g., increasing sample size, n) will not reduce variability, but it can
provide greater confidence in quantitative characterizations of variability. 

Toxicity Reference Value (TRV) - A risk-based dose or concentration that usually includes factors of
toxic uncertainties and is often based on a NOAEL or LOAEL; a TRV is sometimes referred
to as a “toxicity benchmark”, but this is not the same as the conventional “benchmark dose”, 
which is the lower probability bound on a dose for a designated low response.

1

2
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1.3 WHAT IS PRA?1
2

Probabilistic risk assessment (PRA) is a general term for risk assessments that use probability models3
to represent the likelihood of different risk levels in a population (i.e., variability) or to characterize4
uncertainty in risk estimates.  In human health risk assessments, probability distributions for risk reflect5
variability or uncertainty in exposure.  In ecological risk assessments, risk distributions may reflect6
variability or uncertainty in exposure or toxicity.  A PRA that evaluates variability can be used to address7
the question, “What is the likelihood (i.e., probability) that risks to an exposed individual will exceed a8
regulatory level of concern?”.  For example, based on the best available information regarding exposure9
and toxicity, a risk assessor might conclude, “It is estimated that there is a 10% probability that an10
individual exposed under these circumstances has a risk exceeding 1x10-6.”  If a probabilistic approach11
also quantifies uncertainty, the output from a PRA can provide a quantitative measure of the confidence12
in the risk estimate.  For example, a risk assessor might conclude, “While the best estimate is that there is13
a 10% chance that risk exceeds 1x10-6, I am reasonably certain (95% sure) that the chance is no greater14
than 20%.”15

16
A risk assessment performed using probabilistic methods relies on the same fundamental concepts17

and equations as the traditional point estimate approaches.  RAGS Volume 1: Part A (U.S. EPA, 1989a)18
and the Standard Default Factors Guidance (U.S. EPA, 1991a) provide current guidance for19
estimating risk using the following standardized exposure and risk models (in Exhibit 1-2, units refer to20
exposure via drinking water): 21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

where,37
38

CDI = chronic daily intake of the chemical (mg/kg-day)39
C = concentration of the chemical in an exposure medium (e.g., mg/L)40
CR = contact rate (e.g. L/day for water ingestion, mg day-1 for incidental soil ingestion, etc.)41
EF = exposure frequency (days/year)42
ED = exposure duration (years)43
BW = body weight (kg)44
AT = averaging time (equal to ED x 365 days/year for noncarcinogens and 70 years x 36545

days/year for carcinogens)46
CSF = cancer slope factor (linear low-dose cancer potency factor) for the chemical  (mg/kg-day)-147
RfD = reference dose for the chemical for assessing non-cancer health effects  (mg/kg-day)48

CDI
C CR EF ED

BW CSF

Risk CDI CSF

HQ
CDI
RfD

= ⋅ ⋅ ⋅
⋅

= ⋅

=

EXHIBIT 1-2

CANCER AND NONCANCER RISK MODELS

Exposure Model:

Cancer Risk Model:

Noncancer Risk Model:
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EXHIBIT 1-3

USE A PDF TO DISPLAY:

C the relative probability of values

C the most likely values (e.g., modes)

C the shape of the distribution (e.g., skewness,
kurtosis, multimodality)

C small changes in probability density

USE A CDF TO DISPLAY:

C percentiles, including the median

C high-end risk range (e.g., 90th to 99th

percentiles)

C confidence intervals for selected percentiles

C stochastic dominance (i.e., for any
percentile, the value for one variable
exceeds that of any other variable)

C mixed, continuous, and discrete distributions

*Source: EPA, 1997c

In the point estimate approach, a single numerical value (i.e., point estimate) is chosen for each1
variable.  For example, point estimates may include a drinking water ingestion rate of 2 L/day and a body2
weight of 70 kg for an adult.  Based on the choices that are made for each individual variable, a single3
estimate of risk is calculated.  In the probabilistic approach, inputs to the risk equation are described as4
random variables (e.g., variables can assume different values for different people) that can be defined5
mathematically by a probability distribution.  For continuous random variables, such as those in Figure 1-16
(e.g., body weight), the distribution may be described by a probability density function (PDF), whereas for7
discrete random variables (e.g., number of fish meals per month), the distribution may be described by a8
probability mass function (PMF).  The key feature of a PDFs and PMFs is that they describe the range of9
values that a variable may assume, and indicate the relative likelihood (i.e., probability) of each value.  For10
example, drinking water ingestion might be characterized by a normal distribution with a mean of 2 L/day11
and a standard deviation of 1 L/day.  After determining appropriate PDF types and parameter values for12
selected variables, the set of PDFs are combined with the toxicity value in the exposure and risk equations13
given above to estimate a distribution of risks.  Chapter 3 provides guidance on selecting and fitting14
distributions.  15

16
At this time, for human health risk assessments, toxicity values will generally be characterized by17

point estimates because of limitations in the data and techniques for characterizing distributions for toxicity18
in humans.  Only if adequate supporting data are available to characterize variability or uncertainty in19
toxicity values will the Agency consider the use of distributions for toxicity.  The Agency will determine20
the adequacy of supporting data on a case-by-case basis, pending consultation with EPA Headquarters21
(Office of Emergency and Remedial Response).  For ecological risk assessment, toxicity values may be22
characterized by probability distributions.23

24
When displaying a continuous probability25

distribution in a graph, generally both the PDF26
and the corresponding cumulative distribution27
function (CDF) should be presented.  To be most28
clear, it is recommended that a PDF and CDF be29
presented in adjacent (rather than overlaid) plots. 30
Figure 1-1 illustrates a PDF and CDF for a31
normal probability distribution for adult body32
weight.  Both curves represent the same33
distribution, but are useful for conveying different34
information.  The CDF for risk can be especially35
informative for illustrating the percentile36
corresponding to a particular risk level of concern37
(e.g., 1x10-6).  A text box may also be included38
on the graph to highlight important summary39
statistics, such as the parameters of the input40
distribution (e.g., Figure 1-1, 4-1), or selected41
percentiles of the output distribution for risk (e.g.,42
Figure 4-2, 8-1).  Important information for43
reporting probability distributions is summarized in44
Exhibit 1-3.  45

46
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Figure 1-1.  Example of a normal distribution that characterizes variability in adult body
weight (males and females combined).  Arithmetic mean = 71.7 kg, standard deviation =
15.9 kg (Finley et al., 1994).  Body weight may be considered a continuous random
variable.  The left panel shows a bell-shaped curve and represents the probability density
function (PDF), while the right panel shows an S-shaped curve and represents the
cumulative distribution function (CDF).
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For example, a clear description of the parameters for the probability distribution should generally be1
given, as well as an indication of whether the distribution represents variability or uncertainty.2

3

4

5
6
7
8
9

10
11
12
13

In MCA (see next section) and related approaches to PRA, estimates for the probability distributions of14
assessment variables are combined to generate estimates of risk.15

16
1.3.1 WHAT IS A MONTE CARLO SIMULATION?17

18
The most common numerical technique for PRA is Monte Carlo simulation.  The process for a Monte19

Carlo simulation is illustrated in Figure 1-2.  In its general form, the risk equation can be expressed as a20
function of exposure and toxicity variables (Vi): Risk = f(V1, V2, ...Vn).  Solutions for equations with21
PDFs are typically too complex for even an expert mathematician to calculate the risk distribution22
analytically.  However, computers can provide reasonably close approximations of a risk distribution using23
numerical techniques.  This is illustrated here for the simplified case in which the assessment variables are24
statistically independent. In this case, the computer selects a value for each Vi at random from a specified25
PDF and calculates the corresponding risk.  This process is repeated many times (e.g., 5000), each time26
saving the set of input values and corresponding estimate of risk.  For example, the first risk estimate27
might represent a hypothetical individual who drinks 2 L/day of water and weighs 65 kg, the second28
estimate might represent someone who drinks 1 L/day and weighs 72 kg, and so forth.  Each calculation is29
referred to as an iteration, and the set of iterations is called a simulation.  30

31
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Each iteration of a Monte Carlo analysis represents a plausible combination of exposure and toxicity1
variables.  A convenient aid to understanding the Monte Carlo approach for quantifying variability is to2
visualize each iteration as representing a single individual and the collection of all iterations as representing3
a population.  In general, each iteration of a simulation should represent a plausible combination of input4
values, which may require using bounded or truncated probability distributions (see Chapter 3).  However,5
risk estimates are not intended to correspond to any one person.  The “individuals” represented by Monte6
Carlo iterations are virtual and the risk distributions derived from PRA allow for inferences to be made7
about the likelihood or probability of risks occurring within a specified range for an exposed human or8
ecological population.  A simulation yields a set of risk estimates that can be summarized with selected9
statistics (e.g., arithmetic mean, percentiles) and displayed graphically using the PDF and CDF for the10
estimated risk distribution.  More complex Monte Carlo simulations can be developed that quantify the11
correlations between one or more input distributions. 12

13
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Risk = f (V1, V 2, sss V n) x Toxicity

sss

V n

Probability Distribution for Random Variables
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32
33
34
35
36
37
38
39 Figure 1-2.  Conceptual model of Monte Carlo analysis.  Random variables (V1, V2,...Vn) refer

to exposure variables (e.g., body weight, exposure frequency, ingestion rate) that are
characterized by probability distributions.  A unique risk estimate is calculated for each set of
random values.  Repeatedly sampling {Vi} results in a frequency distribution of risk, which can be
described by a probability density function (PDF).  The toxicity term should be expressed as a
point estimate for human health risk assessment, but may be expressed by a probability
distribution for ecological risk assessment.
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1.3.2 WHY IS VARIABILITY IMPORTANT IN RISK ASSESSMENT?  HOW IS IT ADDRESSED BY THE1
POINT ESTIMATE AND PROBABILISTIC APPROACHES ?2

3
As discussed previously, variability refers to true heterogeneity or diversity that occurs within a4

population or sample.  For regulatory risk assessments, this variability can be characterized by a range of5
contaminant concentrations in a medium (air, water, soil, etc.), differences in intake rates or exposure6
frequencies, or in the case of ecological assessments, inter- and intra-species variability in dose-response7
relationships.  Risk Assessment Guidance for Superfund (Section 6.1.2 of U.S. EPA, 1989a) and the8
NCP Preamble (U.S. EPA, 1990) state that Reasonable Maximum Exposure (RME) will generally be the9
principal basis for evaluating potential risks at Superfund sites.  The intent of the RME is to estimate a10
conservative exposure case (i.e., well above the average case) that is still within the range of possible11
exposures based on both quantitative information and professional judgment (Sections 6.1.2 and 6.4.1 of12
U.S. EPA, 1989a).  In addition, the Agency released guidance in 1992 (U.S. EPA, 1992c) recommending13
the inclusion of a “central tendency” exposure estimate to an individual, as well as a high-end exposure14
estimate, in the risk assessment.  Generally, CTE is considered to be a measure of the mean or median15
exposure.  For ecological risk assessments in which the endpoint of concern is local population effects16
(e.g., sustainability or community integrity) rather than individual-level effects, estimates of average or17
central tendency exposure in the population are typically desired (see Section 5.1.2).18

19
Depending on assessment needs at a site, a range of point estimates of risk can be developed to20

represent variability in exposures.  To support the evaluation of RME risk estimates using the point21
estimate approach described in Section 1.3, the Superfund Program developed guidance with22
recommended default values for exposure variables as inputs to the risk equations  (U.S. EPA, 1992a). 23
These standardized values are a combination of average (e.g., body weight, skin surface area) and high-24
end exposure assumptions (e.g., drinking water intake, exposure duration).  A CTE risk estimate is based25
on central estimates (e.g., mean, 50th percentile) for each of the exposure variables.  Available site-26
specific data on plausible mean and upper range values for exposure variables should be used to support27
CTE and RME estimates.  The point estimate approach does not allow the assessor to identify where the28
CTE or RME estimates lie among the risk distribution.  For example, the RME based on the point29
estimate approach could be the 90th percentile, the 99.9th percentile, or some other percentile of the risk30
distribution.  Without knowing what percentile is represented by the RME, the risk manager might be31
unsure about the level of protection corresponding to the RME. 32

33
In a PRA, distributions used as inputs to the risk equations may represent the inter-individual34

variability inherent in each of the exposure assumptions.  By characterizing variability with one or more35
input distributions, the output from the Monte Carlo simulation is a distribution of risks, which represents36
the variability of exposures that could occur in that population.  The high end of that risk distribution (e.g.,37
90th - 99.9th percentiles) is representative of exposures to the RME individual.  The distribution mean38
and/or the central percentiles (e.g., 50th percentile) can be associated with CTE risk estimates.  In39
addition to providing a better understanding of where the RME and CTE risks occur in the distribution, a40
PRA also provides an estimate of the probability of occurrence associated with the risk (e.g., there is a41
10% probability that risks exceed 1x10-6).42

43
Provided that the arithmetic mean for each PDF used in a probabilistic approach is approximately44

equal to the point estimate for the corresponding variable, both approaches will likely yield similar45
estimates for the arithmetic mean (CTE) risk.  Also, the point estimate calculation of the RME risk can be46
expected to lie somewhere in the upper end of the risk distribution, often between the 90th and 99.9th47
percentiles.  The EPA Guidelines for Exposure Assessment (U.S. EPA, 1992a) states that the "high48



RAGS 3A ~Process for Conducting Probabilistic Risk Assessment ~ DRAFT ~ DO NOT CITE OR QUOTE

 chap1_1299.ts.wpd December 30, 1999

Page  1-11 

end"of exposure for a population occurs between the 90th and 99.9th percentiles, with the 99.9th percentile1
considered a bounding estimate.  While the correspondence between the results of two different2
approaches may provide a level of confidence in the risk assessment, care should generally be taken not3
to rely on such comparisons as a yardstick of the “accuracy” of either approach.  If results of PRA4
calculations differ substantially from point estimate calculations, a risk manager may benefit from5
understanding the reasons for the differences and the relative strengths of the different approaches.  For6
example, the point estimate approach may employ arithmetic mean input values for variables that are7
represented by extremely skewed distribution in the probabilistic approach.  Sometimes, a closer look at8
the underlying assumptions and uncertainties in the different approaches will lead a risk assessor to revisit9
certain assumptions in order to provide a more consistent basis for comparison.10

11
1.3.3 WHY IS UNCERTAINTY IMPORTANT IN RISK ASSESSMENT?  HOW IS UNCERTAINTY12

ADDRESSED BY THE POINT ESTIMATE AND PROBABILISTIC APPROACHES ? 13
14

Uncertainty is described as a lack of knowledge.  The Exposure Assessment Guidelines (U.S. EPA,15
1992a) and Exposure Factors Handbook (U.S. EPA, 1997d, e, f) describe a variety of different types16
of uncertainty in risk assessment as well as modeling strategies for addressing uncertainties.  Potential17
sources of uncertainty are basically divided into those associated with model structure (e.g., mathematical18
equation) and those associated with assigning values to the parameters of the model.  Some examples of19
the models that EPA uses in the risk assessment process are the equations to calculate exposure and risk,20
the linearized multistage model to assess cancer dose-response relationships, and media-specific models to21
estimate contaminant concentration.  All models are simplified, idealized representations of complicated22
physical processes.  They can be very useful from a regulatory standpoint, as it is generally not possible to23
adequately monitor long term exposure for populations at contaminated sites.  However, models that are24
too simplified may not adequately represent all25
aspects of the phenomena they were intended to26
approximate or may not capture important27
relationships among input variables.  Other28
sources of model uncertainty can occur when29
important variables are excluded, interactions30
between inputs are ignored, or surrogate31
variables that are different from the variable32
under study are used.33

34
Parameter uncertainty may be the most35

readily recognized source of uncertainty that is36
quantified in site-specific risk assessments at37
hazardous waste sites.  Parameter uncertainty38
can occur in each step of the risk assessment39
process from data collection and evaluation, to40
the assessment of exposure and toxicity. 41
Sources of parameter uncertainty may include42
systematic errors or bias in the data collection43
process, imprecision in the analytical44
measurements, inferences made from a limited45
database when that database may or may not be46
representative of the variable under study, and47

EXHIBIT 1-4

QUANTIFYING VARIABILITY AND UNCERTAINTY
SIMULTANEOUSLY

1. Single source of uncertainty.  
Run multiple one-dimensional Monte Carlo
simulations (1-D MCA), with each simulation
using a different point estimate from the
distribution for uncertainty.  For example,
uncertainty in the arithmetic mean
concentration may be characterized by running
separate simulations with the 95% lower
confidence limit (LCL), sample mean, and 95%
UCL.

2. Multiple sources of uncertainty.
Run a single two-dimensional Monte Carlo
simulation (2-D MCA), in which separate
probability distributions are specified for
variability and parameter uncertainty.  See
Appendices D and E for details.
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extrapolation or the use of surrogate measures to represent the parameter of interest.  1
2

In the point estimate approach, parameter uncertainty is addressed in a qualitative manner for most3
variables.  For example, the Uncertainty Section of a point estimate risk assessment document might state4
that a soil sampling plan yielded a small sample size that may not be representative of overall contaminant5
concentrations and, as a result, the risk estimate may over- or under-estimate actual risk.  Uncertainty in6
the concentration term is addressed quantitatively to a limited extent in a point estimate approach.  The7
Superfund program recommends using the 95% UCL for the arithmetic mean concentration in both CTE8
and RME risk estimates in order to account for uncertainty associated with environmental sampling and9
site characterization (U.S. EPA, 1992b; 1997b).  The 95% UCL is combined in the same risk calculation10
with various central tendency and high-end point estimates for other exposure factors. 11

12
In a probabilistic approach, a probability distribution for risk will represent either variability or13

uncertainty, depending on how the distributions for the input variables are characterized.  If exposure14
variability is characterized using probability distributions, the risk distribution represents variability.  If input15
distributions represent uncertainty in estimates of central tendency (e.g., arithmetic mean), the output16
distribution represents uncertainty in the central tendency risk.  In general, one should avoid developing17
input distributions to a PRA model that yield a single risk distribution that intermingles, or represents both18
variability and uncertainty.  By separately characterizing variability and parameter uncertainty, the output19
from a PRA will be easier to understand and communicate.  A number of tools can aid in evaluating the20
uncertainty in estimated distributions for variability.  Both simple and very complex approaches have been21
applied to this problem.  Two basic methods for quantifying variability and parameter uncertainty22
simultaneously are described in Exhibit 1-4.  PRAs that use these approaches can provide confidence23
bounds on percentiles of the risk distribution based on confidence bounds on one or more parameter24
estimates.  Techniques for characterizing both variability and uncertainty in PRA are discussed in more25
detail in Chapters 4, 5, and 7, and Appendices D and E.26

27
A common apprehension concerning the utility of PRA is that it may require too much knowledge to28

generate credible PDFs.  In addition, if the inputs are not credible, then the outputs are not credible. 29
These apprehensions are valid if the assessment attempts to model variability only.  A risk assessor may30
feel that they can’t specify a PDF because they don’t know enough about the distribution or they are not31
sure that the values reported in the literature are representative of the site population of concern (i.e., I32
am uncertain).  This is precisely the scenario when an analysis of uncertainty may be most helpful (see33
Chapter 3).  While it is often true that a better quality and larger quantity of data would help to increase34
the confidence in risk estimates, uncertainty is not always a reason to avoid PRA.  Indeed, when data are35
limited, an uncertainty analysis may help to inform the risk management decision process and may help in36
choosing the percentile of the risk distribution that corresponds with the RME (see Chapter 4).37

38
Regarding uncertainty analysis, the use of probabilistic methods to propagate variability and39

uncertainty through risk models may have four key advantages over point estimate approaches:40
41

1) Probabilistic methods can provide a more robust method of quantifying confidence in risk42
estimates than the point estimate approach.  Monte Carlo simulation can be used to combine43
distributions of uncertainty for multiple input variables in a single simulation.  By contrast, point44
estimate approaches combine point estimates of uncertainty in separate calculations, a technique45
that can yield estimates of plausible bounds for risk, but cannot yield an estimate of the upper and46
lower 95% confidence limits. 47

48
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2) Techniques for sensitivity analysis that are available using PRA may help risk assessors to better1
identify the influential exposure factors and/or possible variations in the risk models used.2

3) Probabilistic methods can account for correlations between input variables (e.g., body weight and3
skin surface area).4

5
4) Probabilistic methods provide quantitative estimates of the expected value of information (EVOI)6

associated with obtaining more information (Morgan and Henrion, 1990).  The importance of7
quantifying uncertainty in an EVOI framework is discussed in Appendix E.8

9
Since both point estimate and probabilistic approaches in risk assessment are applied to the same10

conceptual models, uncertainties in the conceptual model are generally addressed in the same manner.  If11
other models are available to explain or characterize a given phenomena, the risk estimates associated12
with each of those conceptual models could be compared to determine the sensitivity of the risk to the13
uncertainty in choice of model (see Chapter 2 and Appendix B).  For example, when deciding on a14
contaminant concentration term for tetrachloroethylene in groundwater for a residential exposure15
assessment 10 years in the future, it would be appropriate to compare and contrast several fate and16
transport models and their results before deciding on a concentration term.17

18
1.4 INTERPRETING THE RESULTS OF PRA19

20
In PRA, risk managers are presented with distributions of estimated risks that explicitly consider21

variability and/or uncertainty in exposure.  For ecological risk assessments, the risk distribution may also22
reflect variability and/or uncertainty in toxicity reference values (TRVs, see Chapter 5).  In comparison23
with point estimate risk assessments, which generally provide numerical CTE and RME risk estimates to24
represent variability among individuals, PRA can provide the entire range of estimated risks as well as the25
likelihood of values within the range (i.e., the probability distribution).  As noted above, the EPA26
Guidelines for Exposure Assessment (U.S. EPA, 1992a) states that the "high end" (or RME) of exposure27
for a population occurs between the 90th and 99.9th percentiles, with the 99.9th percentile considered a28
bounding estimate.  Similarly, PRAs developed to support RME risk estimates for Superfund will also29
adopt this definition of a high-end risk. 30

31
 L In general, risks corresponding to the 90th to 99.9th percentiles of the risk distribution may32

be considered plausible high-end risks.  To support an evaluation of RME, a PRA generally33
should provide risk estimates covering this high-end range. 34

35
This definition of the high-end range is based on a characterization of inter-individual variability in risk.  In36
contrast to human health risk assessment, ecological risk assessments may focus on local population37
sustainability and community integrity.  Because of the difference in the risk management objective,38
ecological risks are sometimes evaluated by assessing the risks to an average (rather than RME)39
individual in the population.  However, as discussed in Section 5.1, inter-individual variability in ecological40
risk may be more important when there is a risk to threatened and endangered species.  In general,41
uncertainty in risk estimates may be evaluated qualitatively or quantitatively, depending on the level of42
analysis that is warranted (i.e., using the tiered approach described in Section 1.6).   43

44
As discussed in Section 1.3.2, the Superfund Program generally seeks to establish risk-based cleanup45

goals that are protective for high-end exposed individuals (U.S. EPA, 1989a; 1990).  The NCP (U.S.46
EPA, 1990) discusses a generally acceptable range for cumulative excess cancer risk of 10-6 to 10-4  for47
protecting human health.  Furthermore, the NCP specifies 10-6 as a point of departure for determining48
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remediation goals when ARARs are not available or sufficiently protective.  The range, 10-6 to 10-4 , will1
be referred to as the risk range in this guidance.  If the Hazard Index (HI) is greater than 1, there may2
be a concern for potential non-cancer effects.  Generally, where cumulative carcinogenic risk to an RME3
individual is less than 10-4, and the non-carcinogenic hazard quotient is less than or equal to 1, action is not4
warranted unless there are adverse environmental impacts or ARARs (e.g., maximum contaminant5
levels) are exceeded (U.S. EPA, 1991b). 6

7
The results of a PRA will generally yield a probability distribution for risk (or Hazard Index), from8

which the risk corresponding to the CTE and RME can be identified.  In general, a risk manager will9
identify an RME from the high end of the distribution (i.e., the 90th to 99.9th percentiles) for risk (or10
Hazard Index).  11

12
 L For clarity in this guidance, the 90th to 99.9th percentiles of the risk distribution are13

collectively referred to as the recommended RME range.  14
15

Therefore, in order to utilize PRA results to establish that a cleanup goal is sufficiently protective, two16
questions will generally need to be addressed:17

18
1) How will the RME risk be identified from the RME range of the risk distribution? and19
2) How will information on uncertainty in the high-end risk estimates be utilized in this process?20

21
Addressing these questions generally involves important risk management considerations, namely, the22
degree of protectiveness that should be factored into decisions about site cleanup goals.  In utilizing PRA23
to establish remediation goals, risk managers may compare the RME range of risk estimates to the risk24
levels of concern.  If, after considering uncertainty, and specifically, the potential for underestimating of25
risk, a risk level of concern falls outside the RME range, interpreting the results of a PRA is26
straightforward.  For example, if the 90th percentile of the risk distribution is greater than the level of27
concern and uncertainty is low, there is strong evidence to support remedial action.  Likewise, if the 99.9th28
percentile is below the level of concern and uncertainty is high, there is strong evidence to support a no-29
action decision.  However, if the risk level of concern falls within the RME range, a closer look at site-30
specific factors may be warranted to determine whether the RME risk exceeds the level of concern. 31
Site-specific information may be used to quantify uncertainty in the risk estimates as well as to identify the32
percentile of the risk distribution that appropriately represents the RME risk.  As noted in Section 1.3.2, 33
the RME risk identified from the results of a PRA is likely to differ from that of the point estimate34
approach, and either method can provide useful information for risk management.35

36
In selecting a single percentile of the risk distribution as the basis for risk management decisions, risk37

managers will typically decide which percentile best represents the RME estimate at the site.  The intent38
of this descriptor is to convey an estimate of risk in the upper end of the risk distribution, while providing a39
risk manager with the flexibility to select a different (higher or lower) percentile depending on site-specific40
information regarding exposure and toxicity (U.S. EPA, 1989a).  In general, the percentile that41
appropriately represents the RME individual should be based on quantitative information and professional42
judgment.  In particular, risk managers may need to understand what sources of variability and43
uncertainty are already explicitly accounted for by the modeling approach and inputs (i.e., point estimates44
and/or probability distributions) used to estimate the risk distribution.  Greater detail on how to select an45
appropriate percentile from the RME range based on site-specific information is provided in Chapter 4.46

47
48
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Figure 1-3.  Example of a probability distribution for risk illustrating the 95th percentile
and two different risk levels of concern (A and B).  Assuming the 95th percentile
corresponds to the RME, the need for remedial action depends on how the RME risk
compares with the risk level of concern.  For Case A (RME > level of concern), remedial
action may be warranted.  For Case B (RME < level of concern), remedial action may be
unnecessary.
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The 95th percentile of the risk distribution generally is an appropriate description of high-end exposure as1
identified by the Presidential/Congressional Commission on Risk Assessment and Risk Management in2
1997.  The 95th percentile can be used as a starting point for risk characterization when site-specific3
information is too limited to identify a more appropriate percentile.  As shown in Figure 1-3, if the 95th4
percentile is greater than the level of concern, remedial action may be warranted.  Conversely, if the 95th5
percentile is less than the level of concern, a no-action decision may be warranted.  If a different6
percentile is identified from the RME range (90th to 99.9th percentile) to evaluate the RME risk, the same7
general approach would apply.  The site-specific cleanup level is determined using the nine criteria8
specified in Section 300.430(e)(9)(iii) of the NCP. 9

10
1.5 ADVANTAGES AND11

DISADVANTAGES OF POINT12
ESTIMATE AND PROBABILISTIC13
APPROACHES14

15
Both point estimate and probabilistic16

approaches can provide useful information17
for risk characterization.  However, as18
discussed throughout this chapter, there are19
advantages and disadvantages associated20
with both methods that should be weighed21
carefully prior to choosing to conduct a22
PRA.  A point estimate approach should23
generally be performed prior to considering24
a PRA.  If there is a clear value added from performing a PRA, then the use of PRA as a risk25
assessment tool may be considered. 26

27
L A point estimate approach is conducted for every risk assessment, and a probabilistic28

analysis may not always be needed.29
30

By relying on the full scope of available information, PRA can often provide a more complete 31
characterization of risk, as well as a quantitative description of the uncertainties in risk estimates. 32
However, PRA generally involves additional effort throughout the risk assessment process (see Exhibit 1-33
5) and may not needed for risk management at every site.  Not all PRA’s will involve the same level of34
effort to provide useful information for risk management decisions; the tiered approach given in Section35
1.6 is recommended to determine the appropriate level of analysis.  Also, the potential for36
misinterpretation of methods and conclusions is generally increased in PRA due to the greater complexity37
of the analysis.  Some of the major advantages and disadvantages of both methods are summarized in38
Tables 1-1 and 1-2.39

40

EXHIBIT 1-5
PRA MAY REQUIRE...

C additional time and funds to collect data;
C additional time and funds to conduct the

assessment; 
C specialized work plans;
C contractors with expertise in PRA to

develop the assessment;
C additional time to discuss the assessment

with management and stakeholders; and
C experts to review the results.  
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EXHIBIT 1-6

STAKEHOLDERS POTENTIALLY INVOLVED IN 
DECISION-MAKING PROCESS FOR PRA

C EPA risk assessors and managers 

C members of the public 

C representatives from state or county
environmental or health agencies 

C other federal agencies (i.e., health agencies,
NRDA trustees, etc.)

C tribal government representatives

C Potentially Responsible Parties (PRPs) and
their representatives

C representatives from federal facilities
(Department of Defense, Department of
Energy, etc.)

Compared to a point estimate risk1
assessment, a PRA typically involves more effort2
on the part of both the risk assessor and the risk3
manager (see Table 4-2).  Given the constraints4
of PRA, it is important to determine what5
potential value may be added.  An important6
question to ask is - Does the benefit of PRA7
outweigh the cost and time involved in8
conducting a PRA?  For example, PRA may9
provide insight regarding both the decision to10
undertake active remediation and the extent to11
which remediation is necessary.  For many sites,12
the additional information provided by a PRA will13
not affect the decision that would have been14
made with a point estimate approach alone. 15
PRA will generally be most useful at complex16
sites where the decision whether to take action is17
unclear, and the stakes are high (both in terms of18
remediation costs and risks to human health and19
the environment).20

21
1.6 A TIERED APPROACH FOR PRA22

23
A tiered, or stepwise, approach to PRA is advocated, as shown in the flowchart illustrated in24

Figure 1-4.  Tiered approaches to undertaking PRA have been discussed in the past (Brand and Small,25
1995; Dakins et al., 1994; 1995; Finkel and Evans, 1987; Morgan and Henrion, 1990).  In addition, tiered26
approaches are commonly used for ecological risk assessment (U.S. EPA, 1997a; 1998a).  The level of27
analysis and sophistication of methods used to quantify variability and uncertainty in exposure and toxicity28
can vary in complexity depending on site-specific requirements.  A tiered approach begins with a29
relatively simple analysis and progresses stepwise to more complex analyses.  The level of complexity30
should match the site-specific risk assessment and risk management goals.  31

32
Decision points are those stages of the risk assessment process at which existing information is33

reviewed and decisions are made about next steps (Figure 1-3, diamonds).  Some of these decision points34
may involve both scientific and policy considerations, and are analogous to scientific/management35
decision points (SMDPs) used in ecological risk assessment (U.S. EPA, 1997a), as presented in Chapter36
5.  SMDPs (indicated by ellipses in Figure 1-4) provide an opportunity for re-evaluation of direction and37
goals of the assessment at critical points in the process.  Specific activities leading to these decision points38
are indicated by rectangles in Figure 1-4. 39

40
L SMDPs are used to determine the next step of the process, and input from all41

stakeholders may be considered.42
43

Each decision point can be viewed as scoping for the next phase of the risk assessment.  The risk44
manager may wish to hold a series of meetings to make decisions about the next step of a PRA involving45
the risk assessors and other appropriate personnel.  Some potential stakeholders who may participate in46
discussions at decision points are listed in Exhibit 1-6.47

48
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PRA may involve highly technical concepts and discussions of PRA may tend to focus on the1
interchange between EPA and outside "experts".  To counter balance such a tendency, managers2
generally should give particular emphasis to the inclusion of input from members of the general public who3
are (or may in the future be) exposed to contaminants from a site.  A potential stakeholder may have an4
interest in the outcome of the remedial process.  Communication between EPA and other stakeholders5
generally will continue throughout the risk assessment process.  Often, stakeholders will possess valuable6
information that can improve the quality of the assessment (see Chapter 8).  7

8
1.6.1 BEGIN WITH SCOPING, PROBLEM FORMULATION, AND SCREENING ASSESSMENT9

10
All risk assessments should begin with problem formulation and scoping (U.S. EPA, 1989a; 1997a). 11

Problem formulation is generally an iterative process where substantial reevaluation may occur as new12
information and data become available, with the goal of achieving consensus on the problem formulation13
and analysis methods.  An initial scoping meeting generally occurs prior to any risk assessment activities,14
as shown in the flowchart (Figure 1-4).  The possibility that a PRA might be conducted is discussed at this15
early stage, taking into consideration the available information and the potential value added by quantifying16
variability or uncertainty.  Also at this stage, a conceptual site model is developed that presents the17
contamination sources, contaminated media, plausible exposure pathways, and receptors at a specific site. 18
During the initial scoping effort, additional factors that may be discussed by risk assessors and risk19
managers include: the extent of available data and potential needs for additional data collection; relevant20
exposure pathways (complete or incomplete); and pathways and variables that are expected to have a21
significant impact on the outcome of the risk estimates. 22

23
After scoping, the next step of the risk assessment process is to perform risk screening, considering24

all relevant site-specific pathways and using either preliminary remediation goals (PRGs) or risk-based25
concentrations (RBCs) calculated with default CTE and RME assumptions.  After screening the26
concentrations for each contaminant for appropriate pathways, contaminants that exceed risk-based27
screening levels (contaminants of concern, COCs) will generally be evaluated further in a baseline risk28
assessment (Tier 1).  For COC’s that do not exceed regulatory criteria, the available data suggest that29
these COCs do not pose significant risks, and generally no remedial action need be taken.  In general,30
however, consideration should be given to uncertainty (e.g., limited sampling data) or variability (e. g.,31
particular patterns of site use) in factors that may suggest the potential for higher site risks.  The level of32
analysis that is to be performed should generally be presented as discussed in RAGS Vol. 1, Part D (U.S.33
EPA, 1998b), and may include the following information: the extent of potential site remediation, degree of34
uncertainty associated with the exposure information available for each portion of the site conceptual35
model, and value added in the decision process.  Documentation of the screening level analysis should be36
presented in a standard risk assessment format (RAGS Vol. 1 Part D) and should proceed through hazard37
identification and selection of chemicals of potential concern (U.S. EPA, 1989a; 1995b; 1996).  38

39
1.6.2 TIER 1 OF THE PRA40

41
Figure 1-4, Steps A and B42

43
The initial steps of every PRA will generally involve a point estimate risk assessment.  If the point44

estimate(s) of risk are greater than the level of regulatory concern, a risk assessor (together with other45
stakeholders) may consider whether or not the existing information will support a remedial decision, or46
whether additional risk assessment activities are warranted.  At several points in the tiered approach, a47
question is posed, “Are the Risks a Concern?”.  In order to address this question, a risk assessor (and48
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stakeholders) will generally consider the likelihood that the CTE and RME risk estimate exceeds a target1
risk level.  It may also be important to consider the confidence in the risk estimates; that is, an RME risk2
estimate may be above or below a risk target, but judgment will be needed to determine the level of3
confidence that this risk estimate is sufficiently protective.  The risk may be a concern if additional4
information on variability or uncertainty could lead to a different decision regarding remedial action.  If5
additional probabilistic analysis is unlikely to make a difference in the risk management decision, then a6
decision generally should be made to not continue further with the tiered process for PRA. 7

8
1.6.3 TIER 2 OF THE PRA9

10
Figure 1-4, Step C11

12
Additional risk assessment activities should generally include an initial sensitivity analysis.  This may13

be either a qualitative or quantitative analysis depending on the complexity of the risk assessment at this14
point.  For example, incidental ingestion of soil by children is often an influential factor in determining risk15
from soil, a fact recognized by risk assessors.  This recognition is a de facto informal sensitivity analysis. 16
A quantitative sensitivity analysis can also be performed to identify those exposure variables with the17
greatest influence on risk estimate.  Quantitative techniques for sensitivity analysis are presented in18
Chapter 2 and Appendix B.19

20
Figure 1-4 , Step D21

22
The decision to perform a PRA involves determining whether or not there are sufficient site-specific23

or representative data to describe variability and/or uncertainty in the exposure and toxicity variables used24
to estimate risk. 25

26
L If there are data gaps for important exposure and toxicity variables, then PRA efforts27

should generally focus on quantifying the uncertainty in risk estimates.28
29

To make a decision to use PRA, there should be a clear benefit for at least one contaminant and one30
exposure pathway at the site.  A sensitivity analysis (Step C) can be used to determine the factors that31
most strongly influence the risk estimate.  Often, a small subset of exposure pathways and variables32
dominate the variability and uncertainty in risk estimates.  Limiting the probabilistic descriptions to these33
influential factors is advisable, and will have only minor effects on the output distribution.  If sufficient34
information is available to characterize variability and/or uncertainty in the key variables, an initial PRA35
may be performed (Step G).36

37
Figure 1-4 , Steps E and F38

39
 A PRA will not, by itself, decrease the uncertainty of a risk estimate.  The presence of significant40

data gaps may yield highly uncertaint risk estimates.  After identifying important sources of variability and41
uncertainty, and comparing the point estimates of risk to level(s) of concern, a determination can be made42
regarding the adequacy of the available data for quantifying variability and uncertainty in risk.  If43
significant data gaps exist, and reducing uncertainty in risk estimates is likely to assist in the risk44
management decision, additional data collection may be warranted.  EPA guidance on data useability in45
risk assessment and the data quality objectives process should be considered whenever additional46
sampling or data evaluation is planned (U.S. EPA, 1992d; 1994b).47
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Table 1-1. Advantages and Disadvantages of Point Estimate Approach1

ADVANTAGES2 DISADVANTAGES

Uses RME input assumptions (i.e., combinations of3
central tendency and high-end values) to provide a4
plausible high-end estimate of risk.5

Results in CTE and RME point estimates of risk, which may be
viewed as “bright lines” that do not reflect uncertainty (i.e., risk
levels are either above or below these risk estimates).

Useful as a screening method - may indicate that RME6
risks are either much greater or much less than a7
regulatory level concern.8

Information from sensitivity analysis is generally limited to
dominant exposure pathways and chemicals of concern; does not
highlight the key exposure variables and uncertain parameters.

Central tendency and RME estimates of risk provide a9
semi-quantitative measure of variability.10

Does not provide a measure of the probability that risk exceeds a
regulatory level of concern, or the level of confidence in a risk
estimate.

Employs a consistent approach and standardized11
reporting methods (U.S. EPA, 1998b).12

Provides fewer incentives for collecting better or more complete
information.

Easily understood and communicated.13 May introduce inconsistency in risk estimates across sites due
to different choices of point estimates.

Requires less time to complete; not as resource intensive.14 May not utilize all available data for characterizing variability
and uncertainty in risk estimates. 

15
16

Table 1-2. Advantages and Disadvantages of Probabilistic Risk Assessment17

ADVANTAGES18 DISADVANTAGES

Can make more complete use of site data to characterize19
variability and uncertainty in risk.20

Sufficient information may be lacking on variability and
uncertainty for important exposure and/or toxicity variables. 

Quantitative data on the uncertainty in exposure21
variables can be modeled and may support statistical22
confidence limits on risk estimates.23

May require more time and resources to select and fit
probability distributions.

Sensitivity analysis can identify the exposure variables,24
probability models, and model parameters that strongly25
influence estimates of variability and uncertainty in risk.26

May convey false sense of accuracy unless the exposure models
and probability distributions are representative of site
conditions.

Puts the risk assessment in a Value-of-Information27
framework (see Appendix E).  Can identify data gaps for28
further evaluation/data collection and can use wider29
variety of site-specific information.30

May introduce inconsistency in risk estimates across sites due
to different choices of probability distributions and risk
percentile corresponding to the RME risk.

May provide more comprehensive summary of risk31
estimates, thereby supporting a more informed risk32
management decision process. 33

May require more time and resources to evaluate simulation
results.  Complex approaches may obscure important
assumptions or errors in methodology.

Allows available site-specific information to inform the34
choice of high-end percentile from the risk distribution35
that corresponds with RME risk.36

May require greater effort to communicate methodology and
results. 

37
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Figure 1-4.  Flow chart showing the progression and increasing complexity of a PRA.1
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Figure 1-4 , Step G1
2

If a PRA is advisable, then the first task is generally to perform an initial probabilistic simulation with3
a refined sensitivity analysis.  The initial PRA is generally a 1-dimensional Monte Carlo analysis (1-D4
MCA) in which the probability distributions for selected exposure and toxicity variables represent inter-5
individual variability.  Ideally, the probabilistic analysis will focus on the subset of exposure variables that6
have the greatest influence on the risk estimates.  However, given the limitations of point estimate7
sensitivity analysis (see Appendix C), it may be difficult to identify a subset of exposure variables at the8
onset of the PRA.  For multimedia exposure models, results of point estimate analyses may help to9
identify the contaminants and exposure pathways that dominate the aggregate risks.  Sensitivity analyses10
may also be performed to identify the subset of parameters that dominate the uncertainty in risk11
estimates; this information can be used to focus the approaches for quantifying uncertainty in Tier 3.12

13
L A PRA will usually incorporate an iterative process in which the level and complexity of14

the analysis increases until the scope of the analysis matches the scope of the problem. 15
16

The initial probabilistic simulation is the centerpiece of the workplan for the next tier of a PRA.  Note17
that the risk assessment goals for ecological risk assessment may support a departure from Figure 1-4 at18
this point.  A decision process specific to ecological risk assessment is presented in Chapter 5. 19

20
Figure 1-4 , Step H21

22
The results of the initial PRA can be used to determine if the analyses in Tier 3 should be considered. 23

In general, the basic question that should be addressed at this point is whether or not the risk estimates24
from both the point estimate approach and the 1-D MCA are of concern for the potentially exposed25
population.  If the risk descriptor(s) (e.g., CTE and RME risks) are significantly greater than the level of26
concern, it may be prudent to stop here and report the results using standard reporting formats provided27
by RAGS Vol. 1, Part D (U.S. EPA, 1998b).  As recommended in Section 3.1.3 of RAGS Vol. 1 Part D,28
the results of PRA (including the assessment of confidence and uncertainty) generally should be29
presented as part of the Risk Characterization portion of the Baseline Risk Assessment Report or as an30
appendix, in accordance with regional preferences.  If the qualitative estimate of uncertainty is sufficiently31
great, a quantitative analysis of uncertainty provided in Tier 3 should be performed.  As indicated by the32
SMDP in Figure 1-4, communication between risk assessors, risk managers, and stakeholders is important33
at this stage. 34

35
1.6.4 TIER 3 OF THE PRA36

37
Figure 1-4, Steps I and J38

39
If, after further consideration of available data and modeling approaches, a quantitative analysis of40

uncertainty is not considered useful or appropriate, then a qualitative discussion of uncertainties is41
generally sufficient for the PRA report.  42

43
Figure 1-4, Steps K and L44

45
If uncertainty in important variables can be quantified, then modeling approaches that separately46

characterize variability and uncertainty should be considered.  Examples include 2-D MCA,47
Microexposure Event Analysis, geostatistical analysis of concentration data, and Bayesian statistics. 48
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These are discussed in detail in Appendix E.  Several different approaches may be employed, in an1
iterative fashion, as results are obtained from each analysis.2

3
1.7 GUIDING PRINCIPLES FOR CONDUCTING AN ACCEPTABLE PRA4

5
In the EPA memorandum, Use of Probabilistic Techniques in Risk Assessment (U.S. EPA. 1997c),6

several conditions for conducting a scientifically sound PRA are outlined.  A PRA should generally7
address these conditions to ensure that adequate supporting data and credible assumptions are used in the8
assessment.  These conditions are as follows:9

10
1. The purpose and scope of the assessment should be clearly articulated in a "problem11

formulation"  section which should include a full discussion of any highly exposed or susceptible12
subpopulations evaluated (e.g., children, the elderly, etc.).  The questions the assessment attempts13
to answer should be discussed and the assessment endpoints should be well defined.  In14
accordance with RAGS Part A, the problem formulation should indicate that the risks are being15
evaluated in the absence of any remedial action.  Both current and future risks at the site should16
be evaluated.17

18
2. The methods used for the analysis (including all models used, all data upon which the assessment19

is based, and all assumptions that have a significant impact upon the results) should be20
documented and easily located in the report.  This documentation should generally include a21
discussion of the degree to which the data used are representative of the population under study. 22
Possible sources of  bias inherent in the input distributions should be discussed along with the23
expected impacts on the resulting risk estimates.  For example, if a site-specific study of fish24
consumption indicated consumption rates are five to ten times higher than other studies from25
similar populations, this possible bias or inaccuracy should be discussed in the document.  Also,26
this documentation should include the names of the models and software used to generate the27
analysis.  Computer programs should generally be described in sufficient detail to allow the28
reviewer to understand all aspects of the analysis.  Computer code should provide adequate29
documentation and annotation.  In summary, sufficient information should be provided to allow the30
results of the analysis to be independently reproduced. 31

32
3. The results of sensitivity analyses should be presented and discussed in the report.  The more33

complex probabilistic techniques will typically be applied to the contaminants, pathways, and34
factors of importance to the assessment, as determined by sensitivity analysis or other basic35
requirements of the assessment.36

37
4. The presence or absence of moderate to strong correlations or dependencies between the38

input variables should be discussed and accounted for in the analysis, along with the effects these39
have on the output distributions.40

41
5. Information for each input and output distribution should be provided in the report.  This42

includes tabular and graphical representations of the distributions (e.g., plots of probability density43
functions and/or cumulative distribution function plots) that indicate the location of any point44
estimates of interest (e.g., mean, median, 95th percentile, 99.9th percentile, etc.). The selection of45
distributions should be explained and justified.  For both the input and output distributions,46
variability and uncertainty should be differentiated where possible.47

48



RAGS 3A ~Process for Conducting Probabilistic Risk Assessment ~ DRAFT ~ DO NOT CITE OR QUOTE

 chap1_1299.ts.wpd December 30, 1999

Page  1-24 

6. The numerical stability of the central tendency and the higher end (i.e., upper tail) of the1
output distributions should be evaluated and discussed.  For purposes of PRA, numerical stability2
refers to the observed numerical changes in parameters of the output distribution (e.g., median,3
95th percentile) from a Monte Carlo simulation as the number of iterations increases.  Because4
most risk equations are linear and multiplicative, distributions of risk will generally approximate a5
lognormal.  In general, the tails of the distribution are less stable than the central tendency, and6
the rate of convergence for the tails will depend on the form of the risk model and the skewness7
of the probability distributions selected for input variables.  Given the current speed of computers,8
numerical stability is generally not a concern for most 1-D MCA models; however, it can be an9
important consideration for more complex simulations, such as with 2-D MCA models.10

11
7. Calculations of exposures and risks using point estimate methods should be reported.  If12

results of PRA calculations differ substantially from point estimate calculations, a risk manager13
may benefit from understanding the reasons for the differences and the relative strengths of the14
different approaches.  Sometimes, a closer look at uncertainties in the underlying data,15
assumptions, and models will lead a risk assessor to revisit certain assumptions in order to provide16
a more consistent basis for comparison.  Furthermore, point estimates may be used to answer17
scenario-specific questions and to facilitate risk communication. 18

19
8. Since exposure assumptions (e.g., exposure duration, body weight) are sometimes embedded20

in the toxicity metrics (e.g., Reference Doses, Reference Concentrations, cancer unit risk21
values), the exposure estimates from the probabilistic output distributions may be aligned with the22
toxicity metric. 23

24
In addition, the following conditions specific to the Superfund program should generally be addressed:25

26
1. For non-EPA lead PRAs, a work plan should be submitted for review and approval by the27

appropriate EPA regional office prior to submission of a PRA.28
29

2. A tiered approach should be used to determine the level of complexity appropriate for the risk30
assessment.  The decision to ascend to a higher tier of complexity should generally be made in31
conjunction with the risk manager, regional risk assessment personnel, and other stakeholders.32

33
3. At this time, for human health risk assessments, toxicity values will generally be characterized by34

point estimates because of limitations in the data and techniques for characterizing toxicity to35
humans using distributions.  Only if adequate supporting data are available to characterize36
variability or uncertainty in toxicity values will the Agency consider the use of PDFs to37
characterize toxicity.  The Agency will determine the adequacy of supporting data on a case-by-38
case basis, pending consultation with EPA Headquarters (Office of Emergency and Remedial39
Response).  For some sites, uncertainty in the toxicity values may be an important source of40
uncertainty in risk estimates.  For ecological risk assessment, variability or uncertainty in toxicity41
values may be characterized as distributions.42
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CHAPTER 2 1

2

SENSITIVITY ANALYSIS: HOW DO WE KNOW WHAT’S IMPORTANT?3
4

2.0 INTRODUCTION5
6

Sensitivity analysis, as it is applied to risk assessment, is an approach that utilizes a variety of7
mathematical and statistical techniques to determine which factors in a risk model influence risk most8
strongly.  It provides a means of exploring, in a quantitative manner, the effect of a variety of “what-if”9
scenarios on the risk estimates.  Sensitivity analysis can provide insight into the importance of selecting a10
particular model, including or excluding specific exposure pathways, and making certain assumptions with11
respect to model input parameters (U.S. EPA, 1997).  Chapter 2 focuses on a set of graphical and12
statistical techniques that can be used to evaluate which variables in the risk model contribute most to the13
variation in estimates of risk.  This variation in risk could represent variability, uncertainty, or both,14
depending on the type of risk model and characterization of input variables.  15

16
Sensitivity analysis is used in both point estimate and probabilistic approaches.  The basic approach is17

to allow for a subset of the input variables to vary within prescribed ranges and to determine how much18
the model output changes in response to changes in the values for each input variable. 19

20
As shown in the tiered approach in the flowchart in Figure 1-4, a sensitivity analysis is useful at21

multiple steps of a probabilistic risk assessment (PRA).  It may be performed several times for a single22
risk assessment to both guide the complexity of the analysis and communicate important results.  The23
initial sensitivity analysis (Tier 2, Step C) is conducted with a point estimate risk assessment.  It highlights24
which exposure pathways and variables most strongly influence the risk estimate and may provide useful25
information by being advanced through the PRA tiered approach.  It can also help to determine if26
additional data collection and/or research efforts are warranted (Tier 2, Steps E and F).  The next27
sensitivity analysis (Tier 2,Step G) is performed with a 1-D MCA to determine which variables have the28
greatest contribution to the variance in risk estimates.  In ecological PRA (see Chapter 5), for which29
parameter uncertainty may be characterized using 1-D MCA, sensitivity analysis can be used to30
determine which parameters have the greatest contribution to the uncertainty in the risk estimates. 31
Sensitivity analysis can also highlight important assumptions regarding the choice of probability32
distributions and truncation limits.  Results from 1-D MCA may support a decision to explore more33
advanced modeling approaches in Tier 3. 34

35
L A sensitivity analysis generally should be performed following both a 1-dimensional36

and 2-dimensional Monte Carlo analysis (1-D MCA and 2-D MCA) to determine37
which exposure assumptions and inputs contribute the most to variability and38
uncertainty, respectively.  39

40
As noted in Chapter 1, MCA is one technique used in PRA, and is the focus of this guidance.  An41

input variable contributes significantly to the output risk distribution if it is both highly variable and the42
variability propagates through the algebraic risk equation to the model output (i.e., risk).  Changes to the 43
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EXHIBIT 2-1

DEFINITIONS FOR CHAPTER 2
Continuous Variables - A random variable that can assume any value within an interval of real

numbers (e.g., body weight).
Correlation - A quantitative expression of the statistical association between two variables; usually

represented by the Pearson correlation coefficient for linear models, and the Spearman rank
correlation coefficient (see below) for nonlinear models.

Discrete Variables - A random variable that can assume any value within a finite set of values (e.g.,
number of visits to a site in one year) or at most a countably infinite set of values.

Local Sensitivity Analysis - Evaluation of the model sensitivity at some nominal points within the
range of values of input variable(s).

Monte Carlo Analysis (MCA) or Monte Carlo Simulation - The process of repeatedly sampling from
probability distributions to derive a distribution of outcomes.  MCA is one of several
techniques that may be used in PRA.

Multiple Regression Analysis - A statistical method that describes the extent, direction, and strength
of the relationship between several (usually continuous) independent variables (e.g.,
exposure duration, ingestion rate) and a single continuous dependent variable (e.g., risk).

Nonparametric Tests - Statistical tests that do not require assumptions about the form of the
population probability distribution.

Range Sensitivity Analysis - Evaluation of the model sensitivity across the entire range of values of
the input variable(s).

Sensitivity Analysis - Sensitivity generally refers to the variation in output of a model with respect to
changes in the values of the model’s input(s).  Sensitivity analysis attempts to provide a
ranking of the model inputs based on their relative contributions to model output variability
and uncertainty.  Common metrics of sensitivity include:

< Pearson Correlation Coefficient - A statistic r that measures the strength and direction of
linear association between the values of two quantitative variables.  The square of the
coefficient (r2) is the fraction of the variance of one variable that is explained by least-
squares regression on the other variable.

< Sensitivity Ratio - Ratio of the change in model output per unit change in an input variable;
also called elasticity.

< Spearman Rank Order Correlation Coefficient - A “distribution free” or nonparametric
statistic r that measures the strength and direction of association between the ranks of
the values (not the values themselves) of two quantitative variables.  See Pearson
(above) for r2.

1
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EXHIBIT 2-2

B ENEFITS OF SENSITIVITY ANALYSIS

C U ncertainty analysis  - e.g., After quantifying
parameter uncertainty, we are 95 percent
confident that the RME risk is below the risk
level of concern.

C PRA model design - e.g., How does my
selection of a beta distribution over a
lognormal distribution  influence the 95th

percentile of the risk distribution?

C Resource allocation - e.g., Two of the 10
exposure variables contribute 90 percent of
the uncertainty in the RME risk estimate.

C Risk communication - e.g., For input variable
X, if we were to use a distribution based on
site-specific data instead of a national survey,
we would expect a minimal change in the RME
risk estimate.

HI
C I ED EF

BW AT RfD
=

⋅ ⋅ ⋅
⋅

⋅
1

Equation 2-1

distribution of a variable with a high sensitivity could have profound impact on the risk estimate, whereas1
even large changes to the distribution of a low sensitivity variable may have minimal impact on the final2
result.  This is important when trying to determine where to focus additional resources.3

4
The benefits of sensitivity analysis applied to PRA are presented in Section 2.1.  Details regarding5

common statistical techniques for conducting a sensitivity analysis and interpreting the results are given in6
Section 2.2 and in Appendix B.7
 8
2.1 BENEFITS OF SENSITIVITY ANALYSIS9

10
Sensitivity analysis is beneficial to both risk11

assessors and risk decision makers for a12
number of reasons.  Exhibit 2-2 highlights the13
types of information that sensitivity analysis can14
add to a Superfund risk assessment.  As15
discussed in Section 2.0, a sensitivity analysis16
applied in a tiered approach can be useful in17
deciding which exposure pathways and18
assumptions are carried forward from a point19
estimate risk assessment into a 1-D or 2-D20
MCA.  By identifying the variables that are21
most important in determining risk, one can also22
decide whether point estimates, rather than23
PDFs, can be used with little consequence to24
the model output (thereby reducing the level of25
effort associated with developing PDFs for all26
input variables).  This information is important27
not only for designing 1-D MCA models of28
variability, but also for designing more complex29
analyses of uncertainty discussed in Appendix30
E (e.g., 2-D MCA models, geostatistical31
analysis, Bayesian analysis). 32

33
A hypothetical example showing results of a sensitivity analysis for a 1-D MCA is presented in34

Figure 2-1.  For this example, hazard index (HI) is calculated using Equation 2-1 and the inputs given in35
Table 2-1.36

37
38
39
40
41

Five exposure variables are used to characterize variability in HI associated with an occupational soil42
ingestion pathway.  HI is predominantly sensitive to water ingestion rate (r2 = 88%) and, to a lesser43
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extent, body weight (r2 = 7%) and exposure frequency (r2 = 5%).  The metric of sensitivity in this case is1
the square of the Spearman Rank Correlation Coefficient (see Appendix B.2.5).  If the model output2
variable (e.g., HI) and input variable are highly correlated, it means that the input variable has an impact3
on the model.  As shown in Figure 2-1 (bottom panel), to determine if the correlation is positive or4
negative, the correlation coefficient should not be squared.  For risk equations in general, variables in the5
numerator of the equation (concentration, ingestion rate, exposure duration, etc.) will tend to be positively6
correlated with risk, while variables in the denominator (body weight, RfD for ecological receptors) will7
tend to be negatively correlated with risk.  The greater the absolute value of the correlation coefficient,8
the stronger the relationship. 9

10
11



RAGS 3A ~ Process for Conducting Probabilistic Risk Assessment ~ DRAFT  ~ DO NOT CITE OR QUOTE

chap2_1299.ts.wpd ~ December 30, 1999

Page 2-5 

Figure 2-1 (1 of 2).  Top panel - bar graph showing the r2 values (square of Spearman rank
correlation coefficient), a metric for the dependence of Hazard Index (HI) on exposure factors based
on 1-D MCA for variability. 

Target Forecast:  HI

Water Ingestion - Adult 87.9%

Body Weight - Male 7.4%

Exposure Frequency - Occupational 4.6%

Concentration 0.0%

Exposure Duration - Occupational 0.0%
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Target Forecast:  HI

Water Ingestion - Adult .92

Body Weight - Male -.27

Exposure Frequency - Occupational .21

Concentration -.02

Exposure Duration - Occupational .01

-1 -0.5 0 0.5 1

Measured by Rank Correlation

Sensitivity Chart

1
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3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Figure 2-1 (2 of 2).  Bottom panel - bar graph, sometimes referred to as “tornado plot”, showing rank21
correlation coefficient.  This graph is effective for showing both the relative magnitude and direction of22
influence (positive or negative) for each variable.  In this example, the variable with the greatest effect on23
HI is the water ingestion rate.  Concentration does not influence variability because, in this example, long-24
term average concentration is characterized by a point estimate (i.e., 95% UCL), rather than a probability25
distribution.  Exposure duration does not influence variability because variability in ED is expressed in both26
the numerator (ED) and denominator (AT = ED x 365 for non-carcinogenic effects), and cancels out. 27
Output was generated with Crystal Ball, which calculates the contribution to variance by squaring the28
rank correlation coefficient and normalizing to 100%.29
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Table 2-1.  Input variables used in hypothetical example of hazard index associated with occupational1
exposure via water ingestion.2

Variable3 Distribution Parameters Units

Concentration in Water (C)4 95% UCL 40 mg/L

Tap Water Ingestion Rate (I)5 lognormal1 [1.3, 0.75] L/day

Exposure Duration (ED)6 empirical2 see below years

Exposure Frequency (EF)7 triangular [180, 250, 350] days/yr

Body Weight (BW)8 lognormal1 [74.6, 12.2] kg

Averaging Time (AT)9 empirical3 see below days

RfD10 point estimate 0.5 mg/kg-day
1 Parameter of lognormal distribution are [arithmetic mean, standard deviation].11
2 Parameters of empirical distribution for ED  ~ [min, max, {x}, {p}] = [0, 30, {0.08, 0.18, 0.30, 0.44, 0.61, 0.84, 1.17, 1.72,12

3.1, 6.77, 14.15, 23.94}, {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.975, 0.99}]13
3 AT = ED x 365 for non-carcinogenic risks (hazard index).14

15
In this example, concentration has a correlation of 0 because a point estimate (i.e., 95% UCL)16

was used in the risk equation.  Point estimates do not vary in a Monte Carlo simulation and, therefore, do17
not contribute to the variance in the output.  This result does not mean that concentration is an18
unimportant variable in the risk assessment.  Concentration may still contribute greatly to the uncertainty19
in the risk estimate.  A sensitivity analysis of parameter uncertainty in a risk equation can be explored20
using iterative simulations, such as with 2-D MCA.21

22
Exposure duration also contributes 0% to variance in HI, despite the fact that ED is characterized by23

an empirical distribution function.  For this example, we are focusing on the non-cancer health effect24
associated with a contaminant in groundwater, and the averaging time (AT) is a function of the exposure25
duration (ED x 365).  Therefore, algebraically, ED cancels out, and does not contribute to the variance in26
HI.  In contrast, for evaluations of carcinogenic risks, the averaging time is generally 70 years (i.e., a27
constant), so ED would contribute to the variance in risk.28

29
Decisions regarding allocation of future resources and data collection efforts to reduce lack of30

knowledge generally should take into consideration the most influential input factors in the model, and the31
cost of gaining new information about the factors.  Sensitivity analysis is a key feature of determining the32
expected value of information (EVOI) (see Chapter  3 and Appendix E).  Once a sensitivity analysis is33
used to identify an input variable as being important, the source of it’s variability generally should be34
determined.  If an input variable has a significant uncertainty component, further research and/or data35
collection can be conducted to reduce this uncertainty.  Reducing major sources of uncertainty, such as36
the most relevant probability model for variability or the parameter estimates for the model, will generally37
improve confidence in the model output, such as the estimated 95th percentile of the risk distribution.  A38
variable may contribute little to the variability in risk, but greatly to the uncertainty in risk (e.g., the39



RAGS 3A ~ Process for Conducting Probabilistic Risk Assessment ~ DRAFT  ~ DO NOT CITE OR QUOTE

chap2_1299.ts.wpd ~ December 30, 1999

Page 2-8 

concentration term).  Likewise, a variable may contribute greatly to the variance in risk, but, because the1
data are from a well characterized population, the uncertainty is relatively low (e.g., adult tap water2
ingestion rate).3

4
An example of the output from a 2-D MCA of uncertainty and variability (see Appendix E) is shown5

in Figure 2-2.  This 2-D MCA shows wide confidence limits around the 95th percentile of the distribution6
for risk.  Assume for this example that the decision makers choose the 95th percentile risk as the RME7
risk.  These wide confidence limits suggest that there is high uncertainty associated with this particular8
risk estimate.  Next, assume a sensitivity analysis is run to identify the source(s) of that uncertainty, and9
the results, as shown in Figure 2-2, indicate that the soil concentration variable contributes most to the10
uncertainty in the 95th percentile risk estimate.  Since both the sample size and variance impact the11
magnitude of the confidence limits for an arithmetic mean soil concentration, one way to reduce the12
confidence limits (and thus the uncertainty) would be to collect additional soil samples.  Increasing the13
sample size (from n = 25 to n = 50) reduced the 90% confidence limits for the 95th percentile risk to14
below 1x10-5.15

16
Although the uncertainty in a risk estimate can be reduced by further data collection if the sensitive17

input distribution represents uncertainty, this is not necessarily true for input distributions that represent18
variability.  For example, variability in the distribution of body weights can be better characterized with19
additional data, but the coefficient of variation (i.e., standard deviation divided by the mean) may not be20
reduced.21

22
Even if additional data collection efforts prove to be infeasible, identifying the exposure factors that23

contribute most to risk or hazard may be useful for risk communication.  For example, assume that the24
input for exposure frequency has the strongest affect on the risk estimate for a future recreational open25
space.  Further examination of this exposure variable reveals that the wide spread (i.e., variance) of the26
PDF is a result of multiple users (e.g., mountain bikers, hikers, individuals who bring picnics, etc.) of the27
open space who may spend very different amounts of time recreating.  As a result of this analysis, the28
decision makers and community may decide to focus remediation efforts on protecting the high-risk29
subpopulation that is expected to spend the most time in the open space.30

31
After determining which contaminants, media, and exposure pathways to carry into a PRA, numerical32

experiments generally should be performed to determine the sensitivity of the output to various33
distributions and parameter estimates that may be supported by the available information.  Variables that34
do not strongly affect the risk estimates generally should be characterized with point estimates.  This35
guidance document does not recommend a quantitative metric or rule of thumb for determining when a36
variable strongly affects the output; this must generally be determined on a case-by-case basis.  A37
qualitative or quantitative analysis may be used depending on the complexity of the risk assessment at this38
point.  For example, incidental ingestion of soil by children is often an influential factor in determining risk39
from soil, a factor recognized by risk assessors.  This recognition is a de facto informal sensitivity40
analysis.  An array of quantitative techniques are also available, ranging from something as simple as41
comparing the range of possible values (i.e., maximum - minimum) for each variable, to more complex42
statistical methods such as multiple regression analysis.  Several of these methods are discussed in more43
detail in this chapter and in Appendix B. 44
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Figure 2-2.  Results of 2-D MCA in which parameters of input distributions describing variability are
assumed to be random values.  Results of a sensitivity analysis (top graph) suggest that more than
50% of the uncertainty in the 95th percentile of the risk distribution is due to uncertainty in the
arithmetic mean concentration in soil.  The bottom graph gives box-and-whisker plots for the 95th

percentile of the risk distribution associated with Monte Carlo simulations using different sample sizes
(n = 25 and n = 50).  For this example, the whiskers represent the 5th and 95th percentiles of the
distribution for uncertainty, otherwise described as the 90% confidence interval (CI).  For n = 25, the
90% CI is [1.0E-06, 2.2E-05]; for n = 50, the 90% CI is reduced to [1.2E-06, 9.5E-06].  While
increasing n did not change the 50th percentile of the uncertainty distribution, it did provide greater
confidence that the 95th percentile risk is below 1x10-5.
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EXHIBIT 2-3
INDICES OF SENSITIVITY ANALYSIS 

C Local and/or range sensitivity ratios (i.e., elasticity)

C Normalized partial derivative

C Simple correlation coefficient (or coefficient of
determination, r2)

C Partial correlation coefficient / rank correlation

coefficient

C Rank correlation coefficient

C Normalized multiple regression coefficient

2.2 COMMON METHODS OF SENSITIVITY ANALYSIS1
2

Of the numerous approaches to sensitivity3
analysis that are available (see Exhibit 2-3), no4
single approach will serve as the best analysis for5
all modeling efforts.  The best choice for a6
particular situation will depend on a number of7
factors, including the nature and complexity of the8
model and the resources available.  A brief9
description of two of the more common10
approaches is provided in this chapter.  Appendix11
B presents a more detailed discussion about these12
and other methods.  Sensitivity analysis need not13
be limited to the methods discussed in this14
guidance, which focus on the more common15
approaches.  A large body of scientific literature16
on various other methods is available (e.g., Hamby, 1994; Iman et al., 1988, 1991; Morgan and Henrion,17
1990, Rose et al., 1991; Saltelli and Marivort, 1990; Shevenell and Hoffman 1993; U.S. EPA, 1997).  Any18
method used, however, generally should be documented clearly and concisely.  This documentation19
generally should include all information needed by a third party to repeat the procedure and corroborate20
the results, such as the exposure pathways and equations; a table with the input variables with point21
estimates, probability distributions and parameters; and tables or graphs giving the results of the sensitivity22
analysis and description of the method used.23

24
2.2.1 GRAPHICAL TECHNIQUES25

26
Simple scatter plots of the simulated input and output (e.g., risk vs. exposure frequency, or risk vs.27

arithmetic mean soil concentration) can be used to qualitatively evaluate influential variables.  A “tight”28
scatter plot (i.e., a high r2 value) suggests that a variable may significantly influence the variance in risk. 29
Hypothetical scatter plots that may be used to identify sensitive and insensitive variables are shown in30
Figure 2-3.  Another method for visualizing the relationship between all of the inputs and outputs is to31
generate a scatterplot matrix (Helsel and Hirsch, 1992).  This graphic shows both histograms and32
scatterplots for all variables on the same page.33

34
2.2.2 SENSITIVITY RATIOS: A SCREENING TOOL35

36
Sensitivity ratios  (SR) can be used for sensitivity analysis in both point estimate and probabilistic37

risk assessment.  The approach is easy to understand and apply.  The ratio is equal to the percentage38
change in output (e.g., risk) divided by the percentage change in input for a specific input variable (see39
Appendix B, Equation B-1).  Risk estimates are considered most sensitive to input variables that yield the40
highest ratios.  For simple exposure models in which the relationship between exposure and risk is linear,41
the ratio offers little information regarding the relative contributions of each input variable to the variance42
in risk, as demonstrated in Exhibit 2-4.  However, for more complex models with nonlinear relationships 43
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Figure 2-3.  Scatterplots of simulated random values from a 1-D MCA of variability.  The output
from the model is a contaminant concentration in soil (C) that corresponds with a prescribed (fixed)
level of risk for a hypothetical population (based on Stern, 1994).  For each iteration of a 1-D MCA
simulation, random values were simultaneously selected for all model variables and  the corresponding
concentration (C) was calculated.  Inputs were simulated as independent random variables. 
Scatterplots of 500 consecutive random values and estimates of C are shown for two input variables:
relative absorption fraction, RAF (top graph); and mass fraction of dust as soil, F (bottom graph). 
There is a moderate, indirect relationship between C and RAF (r2 = 0.34), compared with the weak
relationship between C and F (r2 = 0.02), suggesting that the model output (C) is more sensitive to
variability in RAF than F.
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between inputs and outputs (e.g., environmental fate and transport models, pharmacokinetic models), the1
ratio can offer a useful screening tool to identify potentially influential input variables.2

3
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Sensitivity ratios can generally be grouped into two categories: local and range.  For the local1
sensitivity ratio method, an input variable is changed by a small amount, usually ±5% of the nominal2
(default) point estimate, and the corresponding change in the model output is observed.  For the range3
sensitivity ratio method, an input variable is varied across the entire range (plausible minimum and4

EXHIBIT 2-4

EXAMPLE OF SENSITIVITY RATIO CALCULATION

Using the risk model described by Equation 2-1, and hypothetical point estimates given below,
sensitivity ratios were calculated for each of the exposure variables by modifying the point estimates
± 50% (i.e., 1/) = ± 2.0).  Applying Equation B-3 from Appendix B yields the following results given
by Table 2-2 below.

Table 2-2.  Calculation results for sensitivity ratios of a linear equation for hazard index (HI).

Exposure Variable Point Estimate ,
[-50%, +50%]

(HI HI )
HI
2 1

1

− Sensitivity
Ratio (SR)

Conc. in Water (C) 40, [20, 60] [-50%, 50%] [1.0, 1.0]

Tap Water Ingestion Rate
(I)

1.30, [0.65, 1.95] [-50%, 50%] [1.0, 1.0]

Exposure Duration (ED) 0.61, [0.31, 0.92] [0%, 0%] [0.0, 0.0]

Exposure Frequency (EF) 250, [125, 365] [-50%, 46%] [1.0, 1.0]

Body Weight (BW) 74.6, [37.3, 111.9] [100%, -33%] [-2.0, -0.67]
1For non-cancer risks, AT = ED x 365; therefore, ED cancels out of the HI equation algebraically and does   not
contribute to the sensitivity ratio.

 2Maximum EF = 365 days; therefore, maximum % change of point estimate = 46%.

The SR results suggest that relative affects of the input variables on HI cannot be readily
distinguished.  HI is equally sensitive to changes in C, I, and EF (SR = 1.0).  In addition, for these
variables, positive and negative changes to the point estimate yielded the same SR.  HI is inversely
proportion to changes in BW (i.e., as BW decreases, HI increases) and would appear to be most
sensitive to this variable as BW decreases below the hypothetical default value of 74.6 kg.  In
contrast, the probabilistic sensitivity analysis results (Figure 2-1) suggests that I is by far the most
influential variable.  While the point estimate sensitivity analysis may be useful as a screening tool
(e.g., identifying important variables in nonlinear equations, or important exposure pathways that
contribute to aggregate risk estimates), in general, SR is not a robust method for identifying the major
sources of variability and uncertainty in a risk model.
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Y X X1 2= + Equation 2-2

Y a X a X1 1 2 2= + Equation 2-3

maximum values).  If local and range sensitivity results are different, the risk assessor can conclude that1
different exposure variables are dominating risk near the high-end (i.e., extreme tails of the risk2
distribution) than are dominating risk at the central tendency.  This situation is likely to occur when there3
are nonlinear relationships between an input and output variable.  Equation B-3 in Appendix B can be4
used to evaluate SR for different types of exposure models in which the intake equation is generally5
expressed as a simple algebraic combination of input variables.6

7
2.2.3 SENSITIVITY ANALYSIS AND THE M ONTE CARLO M ETHOD8

9
Probabilistic sensitivity analysis can be generally grouped into two categories: 1) methods applied10

after a Monte Carlo simulation is run using the entire set of probability distributions for variables and11
unknown parameters; and 2) methods applied by running simulations in which different subsets of12
variables and/or uncertain parameters are assigned distributions, while all other inputs are set to their13
central values.  This guidance focuses on the first category; further information regarding both techniques14
is given by Cullen and Frey (1999).  15

16
EPA anticipates that Monte Carlo analysis will be used for the majority of PRAs received by the17

Agency.  In Monte Carlo analysis, the probability distributions assumed for the various input variables are18
used to generate a sample of a large number of points.  Statistical methods are applied to this sample to19
evaluate the influence of the inputs on the model output.  A number of different “indices” of sensitivity20
can be derived from the simulated sample to quantify the influence of the inputs and identify the key21
contributors.  Most of these are based on an assumption that the model output Y varies in a monotonic,22
linear fashion with respect to various input variables (X1, X2, etc.).  For example, an estimate of average23
daily intake (mg/kg-day) from multiple exposure pathways is linear with respect to the intake from each24
pathway.  Since most risk models are linear with respect to the input variables, the output distribution25
(particularly its upper percentiles) tends to be dictated by the input variables with the largest coefficient of26
variation (CV), or the ratio of the standard deviation to the mean.  For example, Equation 2-2 represents a27
simple expression for intake rate as a function of random variables X1 and X2 :  28

29
30
31

where X1 and X2 may represent dietary intake associated with prey species 1 and 2, respectively.  If the32
same probability distribution was used to characterize X1 and X2, such as a normal distribution with an33
arithmetic mean of 100 and standard deviation of 50 (i.e., CV = 50/100 = 0.5), each variable would34
contribute equally to variance in Y.  If, however, X2 was characterized by a normal distribution with an35
arithmetic mean of 100 and standard deviation of 200 (i.e., CV = 200/100 = 2.0), we would expect Y to36
be more sensitive to X2.  That is, X2 would be a greater contributor to variance in Y.  37

38
While the coefficient of variation may be a useful screening tool to develop a sense of the relative39

contributions of the different input variables, a common exception is the case when X1 and X2 have40
different scales.  For example, Equation 2-3 is an extension of Equation 2-2:41

42
43
44



RAGS 3A ~ Process for Conducting Probabilistic Risk Assessment ~ DRAFT  ~ DO NOT CITE OR QUOTE

chap2_1299.ts.wpd ~ December 30, 1999

Page 2-14 

Y a X a X1 1 2 2= + θ Equation 2-4

where a1 and a2 are constants that may represent the algebraic combination of point estimates for other1
exposure variables.  If a1 >> a2, then X1 would tend to be the dominant contributor to variance, regardless2
of the CV for X2.3

4
The most influential random variables generally have the highest degrees of skewness or are related5

to the output according to a power function (Cullen and Frey, 1999).  For example, Equation 2-4 presents6
an extension of Equation 2-3 in which there is a power relationship between X2 and Y.  In this example,7
assume Y represents the total dietary intake rate of cadmium for muskrats, X1 and X2 represent the8
dietary intake rate associated with prey species 1 and 2, respectively, a1 and a2 represent additional point9
estimates in the equation, and 2 is the power exponent.  In general, for 2 > 1, the total dietary intake rate10
(Y) will be more sensitive to the intake rate associated with species 2 (X2) than species 1.11

12
13
14
15

Various statistical techniques, known collectively as regression analysis, can be applied to a linear16
equation to estimate the relative change in the output of a Monte Carlo simulation based on changes in the17
input variables.  Examples include the simple correlation coefficient, the Spearman rank correlation18
coefficient and a variety of multiple regression techniques.  See Appendix B for a discussion of these19
techniques.20

21
Monte Carlo methods can also be used to determine the sensitivity over a subset of the output22

distribution, such as the RME range (i.e., 90th to 99.9th percentiles).  For some exposure models, the23
relative contribution of exposure variables may be different for the high-end exposed individuals than for24
the entire range of exposures.  The general strategy for exploring sensitivity over subsets of risk estimates25
is to first sort the distribution of simulated output values in ascending (or descending) order, and then apply26
a sensitivity analysis to the subset of interest (e.g., > 90th percentile).27
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CHAPTER 31
2

SELECTION AND FITTING OF DISTRIBUTIONS3
4

3.0 INTRODUCTION5
6

After completing the sensitivity analysis as7
described in Chapter 2, the next step is to select8
the most appropriate distributions to represent the9
factors that have a strong influence on the risk10
estimates.  This important step in the11
development of a Monte Carlo model can be very12
challenging and resource intensive. 13

14
L Specifying probability distributions for15

all of the input variables and parameters in a PRA will generally not be necessary.16
17

If the sensitivity analysis results indicate that a particular input variable does not contribute significantly to18
the overall variability and uncertainty, then this variable may be represented as a point estimate. 19

20
A probability density function (PDF), sometimes referred to as a probability model, characterizes the21

probability of each value occurring from a range of possible values.  One advantage of using a PDF is22
that it represents a large set of data values in a compact way (Law and Kelton, 1991).  For example, a23
lognormal distribution provides a good fit to a large data set of tap water ingestion rates (n = 5600) among24
children ages 1 to 11 years (Roseberry and Burmaster, 1992).  Therefore, the distribution type25
(lognormal) and associated parameters (mean and standard deviation) provides a complete26
characterization of variability in intake rates, from which other statistics of interest can be calculated (e.g.,27
median, 95th percentile, coefficient of skewness, etc.).  Reducing a complex exposure model to a series of28
representative and well-fitting PDFs can facilitate both the quantitative analysis and the communication of29
the modeling methodology.  In PRA, a PDF can also be used to characterize uncertainty.  For example,30
the sample mean ( ) is generally an uncertain estimate of the population mean (:) due to measurement31 x
error, small sample sizes, and other issues regarding representativeness (see Section 3.3.1).  A PDF for32
uncertainty can be used to represent the distribution of possible values for the true, but unknown33
parameter.  Understanding whether uncertainty or variability is being represented by a PDF is critical to34
determining how the distribution and parameters are to be specified and used in a PRA. 35

36
In general, obtaining representative, high quality data sets to characterize variability and uncertainty in37

exposure and toxicity can be challenging and resource intensive.  Often, more than one probability38
distribution may appear to be a suitable candidate for characterizing a random variable.  Recall from39
Chapter 2 that even if a variable does not contribute greatly to the variability in risk, it may contribute to40
the overall uncertainty, and vice versa.  The choice(s) of distributions and methods of parameter41
estimation should be discussed with an EPA regional risk assessor prior to initiating a PRA.  The42
workplan for the PRA should clearly document the probability distributions selected for the analysis so43
that these choices can be reviewed by the Agency.  Likewise, any input variable that is eliminated from44
full probabilistic treatment generally should be identified along with an explanation for its exclusion.  This45
and other important components of the workplan are presented in Chapter 6.  Chapter 3 provides46
guidance on selecting and fitting distributions for variability and parameter uncertainty based on the overall47

EXHIBIT 3-1
STRATEGY FOR SELECTING AND 

FITTING DISTRIBUTIONS

1. Hypothesize a family of distributions;
2. Estimate distribution parameters; and
3. Assess quality of fit of parameters.
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strategy given in Exhibit 3-1.  A discussion on selecting and fitting of distributions is also given in EPA's1
Report of the Workshop on Selecting Input Distributions for Probabilistic Assessments (U.S. EPA,2
1999a).  The remaining chapters provide guidance on techniques for effectively propagating the3
distributions through a risk model and communicating the results.4
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EXHIBIT 3-2

DEFINITIONS FOR CHAPTER 3

Bin - Regarding a histogram or frequency distribution, an interval within the range of a random variable for which a
count (or percentage) of the observations is made.  The number of bins is determined on a case-by-case basis.  In
general, equal interval widths are used for each bin; however, in some cases (e.g., chi-square test), individual bin
widths are calculated so as to divide the distribution into intervals of equal probability.

Goodness-of-Fit (GoF) Test - A method for examining how well (or poorly) a sample of data can be described by a
hypothesized probability distribution for the population.  Generally involves an hypothesis test in which the
null hypothesis H0 is that a random variable X follows a specific probability distribution F0.  That is, H0: F = F0

and Ha: F Ö F0.
Independence - Two events A and B are independent if knowing whether or not A occurs does not change the probability

that B occurs.  Two random variables X and Y are independent if the joint probability distribution of X and Y
factors into the product of the individual marginal probability distributions.  That is, f(X, Y) =  f(X) A f(Y). 
Independence of X and Y is not synonymous with zero correlation (i.e., Cor(X, Y) = 0).  If X and Y are
independent, then Cor(X, Y) = 0; however, the converse is not necessarily true (Law and Kelton, 1991) - X and Y
may be related in a nonlinear fashion but still maintain Cor(X, Y) = 0.

Independent and Identically Distributed (IID) - Random variables that are independent (see above) and have the same
probability distribution of occurrence.

Nonparametric Method - A procedure for making statistical inferences without assuming that the population distribution
has any specific form such as normal or lognormal.  Sometimes referred to as distribution free methods.  Common
examples are the sign test, Spearman rank correlation, and the bootstrap-t approach.

Parameter - In PRA, a parameter is a constant that characterizes the probability distribution of a random variable.  For
example, a normal probability distribution may be defined by two parameters (e.g., arithmetic mean and standard
deviation). 

Parametric Distribution - A theoretical distribution defined by one or more parameters.  Examples include the normal
distribution, the Poisson distribution, and the beta distribution.

Probability Density Function (PDF) - Same as a probability distribution (see below), although frequently used specifically
for a continuous random variable.  Probability Mass Function is sometimes used to specifically refer to the
probability distribution for a discrete random variable.

Probability Distribution - A table, graph, or formula that associates probabilities with the values taken by a random
variable.  Also called a probability model.

Step Function - A mathematical function that remains constant within each of a series of adjacent intervals but changes in
value from one interval to the next.  Cumulative distribution functions for discrete random variables are step
functions. 

Z-score - The value of a normally distributed random variable that has been standardized to have a mean of zero and a
standard deviation of one by the transformation Z = (X - :)/F.  Statistical tables typically give the area to the
left of the z-score value.  For example, the area to the left of z = 1.645 is 0.95.  Z-scores indicate the direction
(+/-) and number of standard deviations away from the mean that a particular datum lies assuming X is normally
distributed.  Microsoft Excel’s NORMSDIST(z) function gives the probability p such that p = Pr(Z # z), while
the NORMSINV(p) function gives the z-score zp associated with probability p such that  p = Pr(Z # zp).

1
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1
3.1 CONCEPTUAL APPROACH FOR INCORPORATING A PROBABILITY DISTRIBUTION IN A PRA2

3
A step-wise approach is recommended for incorporating probability distributions in a PRA.  Flow4

charts for specifying distributions for variability and uncertainty are given by Figures 3-1 and 3-2,5
respectively.  Both approaches outline an iterative process that involves three general activities:  1)6
identifying potentially important sources of variability or uncertainty; 2) evaluating plausible options for7
distributions and parameter estimates; and 3) reporting the results.  These steps are discussed below.8

9
3.2 WHAT DOES THE DISTRIBUTION REPRESENT?10

11
A sensitivity analysis may suggest that characterizing variability or uncertainty in a particular variable12

in the risk model would be useful for evaluating risk estimates.  Various metrics of sensitivity are given in13
Chapter 2.  For Monte Carlo simulations of variability, a distribution is desired that characterizes either14
inter- or intra-individual variability (depending on the complexity of the model).  More specifically, the15
distribution is intended to be representative of the target population - the receptors that are potentially at16
risk.  The distinction between a target population, a sampled population, and a statistical population should17
be considered carefully when evaluating information for use in both point estimate and probabilistic risk18
assessment.  19

20
In PRA, there may be a perception that, because a distribution is used rather than a point estimate,21

there is greater confidence that the available information characterizes the target population.  While this22
may be true in some cases (i.e., more information is available than is reflected by the use of the point23
estimate), there is always some degree of uncertainty in how representative the available data are, and24
whether or not the data are sufficient to characterize variability.  These issues should generally be25
considered early in the process of developing a probabilistic model, and are important components of the26
tiered approach (see Chapter 1, Figure 1-4).  The importance of relating the distribution to the target27
population, clearly distinguishing between variability and uncertainty, and evaluating data28
representativeness is emphasized below.29

30
3.2.1 CONCEPTS OF POPULATION AND SAMPLING31

32
A target population is the set of all receptors that can potentially be at risk.  A risk assessor is33

interested in knowing features of this population of receptors (e.g., exposure duration, exposure34
frequency, etc.).  The target population is often considered to be the “population of concern”.  A sampled35
population is the set of receptors available for selection and measurement.  A sampled population may be36
the target population or may be a different population that is representative of the target population.  A37
statistical population is an approximation of the target population based on information obtained from the38
sampled population.39

40
Distributions are generated from representative sample populations to make inferences about the41

target population.  Ideally, a sampled population is a subset of a target population and is selected for42
measurement to provide accurate and representative information about the exposure factor being studied. 43
However, defining representative samples may be a matter of interpretation.44
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Sensitivity Analysis Results
(Chapter 2)

Is the factor
influential?

Use a health protective 
point estimate

Do data exist
or can they be 

collected?

What is the target 
population?

Is the factor
amenable to

expert judgment?

Acquire data

Determine if variability
in factor is characterized
by discrete or continuous
probability distribution

Conduct expert
elicitation for 

variability

No

Yes

Yes

No

No

Yes

{Continue on next page}

Are data
representative
of the target
population?

Yes

No

1

Figure 3-1 (page 1 of 2).  Conceptual approach for incorporating probability distributions for
variability in PRA.
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{Continued from previous page}

Use an EDF?

Choose a type of PDF
(Normal, Weibull, etc.)

Estimate
parameters

Assess
Goodness-of-Fit

Apply truncation
limits as appropriate

Estimate percentile
values of EDF

Estimate tails
and truncation limits

Would a mixed
distribution better
represent the data?

Graphical data exploration
(histograms, scatterplots, etc.)

Specify a mixed
distribution

Present PDF /EDF
 in workplan
 and report

Yes

No

YesNo

1

Figure 3-1 (page 2 of 2).  Conceptual approach for incorporating probability distributions for
variability in PRA.



RAGS 3A ~ Process for Conducting Probabilistic Risk Assessment ~ DRAFT ~ DO NOT CITE OR QUOTE ~ 
 chap3_1299.pg.ts.wpd ~ December 30, 1999

Page 3-7 

Select probability
distribution(s) for variability

in exposure factor(s)
(Fig. 3-1)

YesNo

Select a plausible
model for the

exposure pathway
or variable (Fig. 3-2b)

Continue
quantifying
uncertainty?

Run simulation to
propagate variability

and uncertainty
(e.g., multiple 1-D MCAs;

2-D MCA; MEE, etc.)

Present 
results in graphical
and tabular format

Quantify parameter 
uncertainty

with point estimates or
distribution(s) (Fig. 3-2c)

Identify dominant 
exposure pathway(s) from 

Sensitivity Analysis 
(Chapter 2)

Identify factor(s)
that may contribute
to uncertainty in the

risk distribution
(Chapter 2)

1

Figure 3-2a (part 1 of 3).  Conceptual approach for quantifying model and parameter uncertainty in
PRA.
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Yes
Is model

appropriate?

Identify dominant 
exposure pathway(s) 

from 
Sensitivity Analysis 

(Chapter 2)

Is more than
one model plausible

to quantify exposure?

Evaluate major defining and
limiting components of model:
• process(es) characterized 
   (e.g., transport, diffusion, 

volatilization, bioavailability, etc.)
• temporal and spatial scales
• level of aggregation / simplification

Evaluate intended purpose and
objectives of candidate model:
• regulatory context
• scientific questions addressed
• application niche (physical, 
   chemical, biological system)
• status of Agency and/or peer review

Determine the exposure factor(s)
quantified by a candidate model

Evaluate theoretical basis:
• mechanistic basis for algorithms?
• numerical or analytic solution

Run simulation with
candidate model

(Fig. 3-2a)

Select
alternative 

model

Yes

No

No

1

Figure 3-2b (part 2 of 3).  Detailed conceptual approach for incorporating model uncertainty in PRA.
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Present
results in graphical
and tabular format

Conduct expert
elicitation

Identify candidate probability 
distribution(s) for variability (Fig. 3-1):
• mechanistic basis for variability
• exploratory data analysis
• expert judgment
• Maximum Entropy principles

Is information
available to

quantify parameter
uncertainty? 

Is the parameter
amenable to

expert elicitation?

Yes

No

Run simulation to
propagate variability

and uncertainty (Fig. 3-2a)

YesNo

No

Yes

Is an alternative
probability model

plausible?

Select distribution (or point
estimate) for uncertainty

Estimate Parameters
(e.g., MLE, method of

moments, etc.)

Run Sensitivity Analysis 
to identify important

sources of uncertainty

1

Figure 3-2c (part 3 of 3).  Detailed conceptual approach for incorporating parameter uncertainty in
PRA.
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3.2.2 CONSIDERING VARIABILITY AND UNCERTAINTY IN SELECTING AND FITTING1
DISTRIBUTIONS2

3
A PDF can represent either variability or uncertainty.  Generally, different models will be used to4

represent variability or uncertainty for an exposure variable.  For example, a normal probability distribution5
may characterize variability in body weight, whereas a uniform distribution may characterize uncertainty6
in the estimate of the arithmetic mean of the normal distribution.  The appropriate interpretation and7
analysis of data for an exposure variable will depend on whether the distribution will be used to represent8
variability or uncertainty.  Figure 3-1 outlines a process for selecting distributions for variability, whereas9
Figure 3-2 outlines a process for quantifying both model and parameter uncertainty.10

11
Variability refers to observed differences attributable to true heterogeneity or diversity in a population12

(U.S. EPA, 1997b).  Variability results from natural random processes.  Inter-individual variability may13
stem from environmental, lifestyle, and genetic differences.  Examples include human physiological14
variation (e.g., natural variation in body weight, height, breathing rates, drinking water intake rates),15
changes in weather, variation in soil types, and differences in contaminant concentrations in the16
environment.  Intra-individual variability may reflect age-specific changes (e.g., body weight and height). 17
Variability is not reducible by further measurement or study.  A PDF for variability can be obtained by18
fitting a distribution to the sample measurements. 19

20
Uncertainty refers to the lack of knowledge about specific factors, parameters, or models (U.S. EPA,21

1997b).  Although uncertainty in exposure and risk assessment is unavoidable due to the necessary22
simplification of real-world processes, it can be reduced by further measurement and study.  Parameter23
uncertainty may stem from measurement errors, sampling errors, or other systematic errors in the24
collection  and aggregation of data.  Model uncertainty may reflect the simplification of a complex25
process, a mis-specification of the model structure, a misuse or misapplication of a model, and the use of26
surrogate data or variables.  Scenario uncertainty may reflect errors in an exposure model and the use of27
expert judgment.  A conceptual exposure model can be used to provide direction in specifying a28
probability distribution for uncertainty.  For example, the concentration term in a Superfund risk29
assessment typically represents the long-term average concentration to which a receptor is exposed (see30
Chapter 4).  An uncertainty distribution for the concentration term could be developed from ideas about31
the statistical uncertainty of estimating the long-term average from a small sample, and the assumption of32
random movement of the receptors within a defined exposure unit.33

34
This chapter primarily focuses on methods for quantifying uncertainty associated with the selection of35

a probability distribution, and estimating parameters of a distribution.  A probability distribution can be36
referred to as a type of model in the sense that it is an approximation, and often a simplified representation37
of variability or uncertainty that combines both data and judgment.  A broader use of the term model38
refers to a representation of a chemical, physical, or biological process.  In risk assessment, many39
different models have been developed, with varying objectives, major defining and limiting components,40
and theoretical basis.  Figure 3-2b provides a general process for exploring model uncertainty of this type. 41
This figure reflects the concepts and spirit of the Agency Guidance for Conducting External Peer42
Review of Environmental Regulatory Modeling (U.S. EPA, 1994).  In general, EPA regional risk43
assessors should be consulted in order to determine the types of models that may be plausible for44
quantifying exposure at a particular site.45

46
Quantifying parameter uncertainty in a probabilistic model typically requires judgment.  When data47

are uncertain due to, for example, small sample sizes or questionable representativeness (see Section48
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3.3.1), Monte Carlo simulation can be a useful tool for demonstrating the effect of the uncertainty on the1
risk estimates.  It is most important to model uncertainty when the sensitive input variables (either point2
estimates or PDFs for variability) are uncertain.  While a quantitative uncertainty analysis may complicate3
a risk management decision by suggesting that risk estimates are highly uncertain, this information can be4
helpful by focusing additional efforts towards collecting data and reducing uncertainty in the most5
sensitive input variables.  Likewise, if an estimated risk is below a regulatory level of concern, even after6
quantifying highly uncertain inputs to the model, the risk manager may be more confident in a decision. 7
As emphasized in Figures 3-2a,b, and c, risk assessors should generally refrain from setting ad hoc8
probabilities to different candidate models in a single Monte Carlo simulation.  Instead, this guidance9
strongly recommends exploring model or parameter uncertainty by running a separate simulation with10
each candidate model.  For example, rather than randomly assigning a beta distribution or a lognormal11
distribution to an exposure variable for each iteration of a simulation, separate simulations should be run12
with the candidate probability distributions.  Similarly, if a range of temporal or spatial scales are plausible13
for quantifying exposure, multiple simulations should be designed to demonstrate the importance of these14
assumptions on the risk estimates.15

16
Uncertainty in parameter estimates may be characterized using a variety of methods.  Similar to a17

PDF for variability, a PDF for parameter uncertainty may be represented by a probability distribution with18
a unique set of parameters.  Sometimes the distribution for uncertainty can be specified by knowing (or19
assuming) a distribution for variability.  For example, if X is a normally distributed random variable, the20
Student’s t distribution and the chi-square (P2) distribution can be used as PDFs for uncertainty in the21
sample mean and variance, respectively.  The PDF for both the Student’s t and chi-square distributions is22
determined by the sample size (n).  If a PDF for uncertainty cannot be determined from the PDF for23
variability, or assumptions regarding the underlying distribution for variability are not supportable,24
nonparametric or “distribution free” techniques may be used (e.g., bootstrapping).  Both parametric and25
nonparametric techniques may yield confidence intervals for estimates of population parameters.  26

27
3.2.3 DEALING WITH CORRELATIONS AMONG VARIABLES OR PARAMETERS28

29
Correlations between exposure variables or between parameters of a probability distribution may also30

be important components of a probabilistic model.  While Monte Carlo simulation software (e.g., Crystal31
Ball®, @Risk®) is available to incorporate correlations into a model, relevant data for specifying the32
correlation matrix are generally unavailable.  Therefore, in most PRAs, random variables are sampled33
independently in 1-D MCA and distributions for parameters are sampled independently in 2-D MCA. 34
However, in the absence of data, it may be useful to explore the effect of plausible correlations as part of35
a more detailed evaluation of uncertainty (i.e., Tier 3 of the PRA process given by Figure 1-4).  One36
approach that can be used to correlate two random variables (or uncertain parameters) is to specify a37
bivariate normal distribution (Nelsen, 1986; 1987; Brainard and Burmaster, 1992).  Example 3-4 in this38
chapter demonstrates this approach applied to a simple linear regression equation relating contaminant39
concentrations in soil and dust.  In general, because of the complexity of specifying a valid covariance40
matrix when correlating more than two factors at a time, risk assessors may need to consult a statistician41
to avoid generating misleading risk estimates.42

43
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3.3 DO DATA EXIST TO SELECT DISTRIBUTIONS?1
2

Developing site-specific PDFs for every exposure assumption (or toxicity value, in the case of3
ecological risk) can be time and resource intensive, and in many cases, may not be worth the effort.  For4
those exposure variables that do exert a significant influence on risk, a PDF may be developed from site-5
specific data, data sets available in the open literature (e.g., EPA’s Exposure Factors Handbook [U.S.6
EPA 1997a]), or from existing PDFs in the literature (e.g., Oregon DEQ, 1998; peer-reviewed7
publications).8

9
At Superfund sites, perhaps the most common PDF developed from site-specific data will be the10

media concentration term.  The sample (i.e., collection of empirical measurements) will most often be11
used to estimate either a point estimate of uncertainty (e.g., an upper confidence limit for the arithmetic12
mean concentration - the 95% UCL), or a distribution that characterizes the full distribution of uncertainty13
in the mean.  Exposure variables such as ingestion rates, exposure duration, and exposure frequency will14
most likely be derived from existing PDFs or data sets in the open literature.  The Agency is currently15
developing national default PDFs, similar to the Standard Default Exposure Factors for point estimates16
(U.S. EPA, 1991), for a number of the most commonly used exposure pathways and variables (U.S.17
EPA, 1999b; 1999c).  Until these PDFs are developed, PDFs for exposure variables that lack adequate18
site-specific data will typically be selected from 1) existing PDF; 2) data on the entire U.S. population; or19
3) data on subsets of the U.S. population that most closely represent the target population at a site.  If20
risks to a sensitive subpopulation, such as young children, elderly adults, ethnic groups, or subsistence21
fishermen, are a concern at a site, then existing PDFs or data sets that best characterize these22
subpopulations would be preferable to national distributions based on the entire U.S. population.  If23
adequate site-specific data are available to characterize any of the exposure variables, distributions can be24
fit to those data.  The mechanics of how to select and fit distributions are discussed in the remainder of25
this chapter.26

27
An appropriate question to consider when evaluating data sets for use in exposure and risk28

assessment is, “How many data are enough?”.  Generally, the larger the sample size (n), the greater29
one’s confidence in the choice of a probability distribution and the corresponding parameter estimates. 30
Conversely, for small n, goodness-of-fit tests (Section 3.5) will often fail to reject any of the hypothesized31
PDFs.  In general, there is no rule of thumb for the minimum sample size needed to specify a distribution32
for variability or uncertainty.  Increasing sample size may be an important risk management consideration33
when making decisions in the face of uncertainty.34

35
3.3.1 WHAT ARE REPRESENTATIVE DATA?36

37
The question, “What is a representative sample?”, is important to address when selecting and fitting38

distributions to data.  Many of the factors that may determine representativeness (e.g., sample size, the39
method of selecting the target, and sample population (see Section 3.2.1)) are relevant to both point40
estimate and probabilistic risk assessment.  EPA’s Guidance for Data Usability in Risk Assessment41
(U.S. EPA, 1992) describes representativeness for risk assessment as the extent to which data define the42
true risk to human health and the environment.  43

44
The goal of representativeness is easy to understand.  However, evaluating data to determine if they45

are representative is more difficult, especially if the problem and decision objectives have not been clearly46
defined.47

48



RAGS 3A ~ Process for Conducting Probabilistic Risk Assessment ~ DRAFT ~ DO NOT CITE OR QUOTE ~ 
 chap3_1299.pg.ts.wpd ~ December 30, 1999

Page 3-13 

EXHIBIT 3-3

FACTORS TO CONSIDER IN SELECTING A

PROBABILITY DISTRIBUTION*

C Is there any mechanistic basis for
choosing a distributional family?  

C Is the shape of the distribution likely to
be dictated by physical or biological
properties or other mechanisms?

C Is the variable discrete or continuous? 

C What are the bounds of the variable? 

C Is the distribution skewed or symmetric?  

C If the distribution is thought to be
skewed, in which direction?  

C What other aspects of the shape of the
distribution are known?

C How well do the tails of the distribution
represent the observations?

*Source: U.S. EPA, 1997b

The importance of representativeness also varies with the level of complexity of the assessment.  If a1
screening level assessment is desired, for example, to determine if concentrations exceed a health2
protective exposure level, then representativeness may not be as important as health protectiveness. 3
However, if a complete baseline risk assessment is planned, the risk assessor should generally consider4
the value added by more complex analyses (e.g., more site-specific data collection, sensitivity analysis,5
and exposure modeling).  A tiered approach for making these decisions for a PRA is presented in Chapter6
1; examples of more complex analyses are presented in Appendix E.  In addition, the Agency (U.S. EPA,7
1999a) summarizes the advantages and weaknesses of proposed checklists for risk assessors to evaluate8
representativeness of exposure factors data.9

10
A surrogate study is one conducted on a sampled population that is similar to, but not a subset of the11

target population.  When using surrogate data, the risk assessor must generally exercise judgment about12
the representativeness of the data to the target population.  For example, the distribution of body weights13
of deer mice from two independent samples from similar ecosystems may differ depending on the age14
structure, proportion of males and females, and the time of year that the samples were obtained. 15
Uncertainties associated with the use of surrogate studies should be discussed in the assessment.16

17
The evaluation of data representativeness will necessarily involve judgment.  The workplan should18

generally include a description of the data, the basis for the selection of each distribution, and the method19
used to estimate parameters (see Chapter 6).  Empirical data (i.e., observations) are typically used to20
select distributions and derive parameter estimates.  One exception is the use of expert judgment or21
elicitation (see Section 3.3.2) in cases where the quality or quantity of available data are found to be22
inadequate.23

24
3.3.2 THE ROLE OF EXPERT JUDGMENT25

26
Expert judgment is an inferential opinion of a27

specialist or group of specialists within an area of28
their expertise.  When there is a data gap for an29
input variable, expert judgment is appropriate for30
obtaining distributions.  Note that distributions31
elicited from experts reflect individual or group32
inferences, rather than empirical evidence. 33
Distributions based on expert judgment can serve34
as Bayesian priors in a decision-analytic35
framework and can be modified as new empirical36
data become available.  There is a rich literature37
regarding the protocol for conducting expert38
elicitations and using the results to support39
decisions (Morgan and Henrion, 1990). 40
Elicitation of expert judgment has been used to41
obtain distributions for use in risk assessments42
(Morgan and Henrion, 1990; Hora, 1992; U.S.43
EPA, 1997b) and in developing air quality44
standards (U.S. EPA, 1982).45

46
Bayesian analysis is a statistical approach47

that allows the current state of knowledge,48
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expressed as a probability distribution, to be formally combined with new data to reach an updated1
information state.  In PRA, Bayesian Monte Carlo analysis (Bayesian MCA) can be used to determine2
the reduction in uncertainty arising from new information.  When combined with techniques from decision3
analysis, Bayesian MCA can help to determine the type and quantity of data that generally should be4
collected to reduce uncertainty.  The benefits and limitations of Bayesian statistics, Bayesian MCA, and5
decision analysis (i.e., value of information, or VOI), as applied to PRA, are discussed in greater detail in6
Appendix E.7

8
3.4 FITTING DISTRIBUTIONS TO DATA9

10
Sometimes more than one probability distribution may adequately characterize variability or11

uncertainty.  In general, the preferred choice is the simplest probability model that adequately12
characterizes variability or uncertainty.  For example, a log-logistic distribution would not necessarily be13
selected over a 2-parameter lognormal distribution simply because it was ranked higher in a goodness-of-14
fit test by a statistical software package.  Some distributions (e.g., normal, lognormal) are well known15
among risk assessors.  The statistical properties for these distributions are well understood and the formal16
descriptions can be quite brief.  In addition to the available data, the choice of distributions can be17
influenced by knowledge of the mechanisms or processes that result in variability. 18

19
Important factors to consider in selecting a PDF are described in Exhibit 3-3.  An  initial step in20

selecting a distribution is to determine if the random variable is discrete or continuous.  Continuous21
variables take any value over one or more intervals and generally represent measurements (e.g., height,22
weight, concentration).  A mathematical function describes the probability for each value across an23
interval for a continuous variable.  Discrete variables take either a finite or (at most) a countably infinite24
number of values that have only integers.  The number of rainfall events in a month is an example of a25
discrete random variable, whereas the amount of rainfall is a continuous variable.  Similarly, the number26
of fish meals per month is a discrete variable, whereas the average size (mass) of a fish meal is27
continuous.  Unique probabilities are assigned to each value of a discrete variable.  Another important28
consideration is whether there are plausible bounds or limits for a variable.  For example, it is highly29
unlikely that an American adult will weigh less than 30 kg or more than 180 kg.  Most exposure variables30
may assume any non-negative value within a plausible range.  A more detailed discussion of factors to31
consider in selecting a PDF and specifying parameter values is provided below.32

33
3.4.1 CONSIDERING THE UNDERLYING MECHANISM34

35
There may be mechanistic reasons depending on known physical or biological processes that dictate36

the shape of the distribution.  For example, normal distributions result from processes that sum random37
variables whereas lognormal distributions result from multiplication of random variables.  A Poisson38
distribution is used to characterize the number of independent and randomly distributed events in a unit of39
time or space.  An exponential distribution would describe the inter-arrival times of independent and40
randomly distributed events occurring at a constant rate.  If, instead, the elapsed time until arrival of the41
k th event is of interest, then the appropriate probability distribution would be the gamma distribution.  42

43
L In all cases, it is incumbent on the risk assessor to explain clearly and fully the reasoning44

underlying the choice of a distribution for a given exposure variable - primarily from a45
mechanistic standpoint.46

47
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Appendix C (Table C-1) describes the causal mechanisms or phenomena underlying several1
commonly used distributions and provides examples of phenomena they describe.  Appendix C also2
illustrates probability distributions (both PDFs and CDFs) commonly used in PRA.  While intuitively3
appealing, identifying a mechanistic basis for a distribution can be difficult for many exposure variables;4
however, it may be relatively apparent that the variable is bounded by a minimum (e.g., ingestion rate $ 05
mg/day) and a maximum (e.g., absorption fraction # 100%), or that the relevant chance mechanism6
results in a discrete distribution rather than a continuous distribution, as described above.7

8
3.4.2 EMPIRICAL DISTRIBUTION FUNCTIONS (EDFS)9

10
In some cases, an empirical distribution function (EDF) may be preferred over evaluating the fit of11

alternative probability models to a data set.  EDFs provide a way to use the data itself to define the12
distribution of the relevant variable.  Briefly, an EDF for a random variable is described by a step function13
based on the frequency distribution of observed values.  An EDF for a continuous random variable may14
be linearized by interpolating between levels of the various bins in a frequency distribution.  This CDF for15
a linearized EDF appears as a line, rather than steps.  Example 3-1 illustrates an EDF, linearized EDF,16
and beta distribution ("1 = 0.63, "2 = 2.85, rescaled to min = 0, max = 364) fit to percentile data for soil17
ingestion rates in children (Stanek and Calabrese,1995).  A plausible range (i.e., minimum and maximum18
values) was imposed on the data set for this example. 19

20
EDFs provide a complete representation of the data with no loss of information.  They do not depend21

on the assumptions associated with estimating parameters for other probability models.  EDFs provide22
direct information about the shape of the distribution, revealing skewness, multimodality, and other23
features.  However, EDFs may not adequately24
represent the tails of a distribution due to25
limitations in data acquisition.  In the simplest26
case, an EDF is constrained to the extremes of27
the data set.  This may be an unreasonable28
restriction if limiting the EDF to the smallest and29
largest sample values is likely to greatly30
underestimate the distributional tails.  If this is an31
important source of uncertainty, the risk32
assessor may choose to extend the tails of the33
distribution to plausible bounds or to describe the34
tails with another distribution (see Exhibit 3-4). 35
For example, an exponential distribution may be36
used to extend the tails based on the last five37
percent of the data.  This method is based on38
extreme value theory, and the observation that39
extreme values for many continuous, unbounded40
distributions follow an exponential distribution41
(Bratley et al., 1987).  As with other probability42
models, uncertainty in the plausible bounds of an43
EDF may be reduced by obtaining additional44
information.45

46
Advantages and disadvantages of using EDFs in PRA are discussed in detail in the Report of the47

Workshop on Selecting Input Distributions for Probabilistic Assessments (U.S. EPA, 1999a).48

EXHIBIT 3-4

VARIATIONS OF THE EDF*

Linearized - Linearly interpolates between
two observations, yielding a linearized
cumulative distribution pattern.

Extended - In addition to linearizing (see
above), adds lower and upper bounds based
on expert judgment.

Mixed Exponential - Adds an exponential
upper and/or lower tail to the EDF.

*Source: T. Barry in U.S. EPA, 1999a.
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3.4.3 GRAPHICAL METHODS FOR SELECTING PROBABILITY DISTRIBUTIONS1
2

Graphical methods can provide valuable insights and generally should be used in conjunction with3
exploratory data analysis.  Graphical methods may include frequency distributions, stem-and-leaf plots, dot4
plots, line plots for discrete distributions, box-and-whisker plots, and scatter plots (Tukey, 1977; Conover,5
1980; Morgan and Henrion, 1990).6

7
L Graphical methods are invaluable for exploring a data set to understand characteristics of8

the underlying population.9
10

Together with statistical summaries, graphical data summaries can reveal important characteristics of a11
random variable, including skewness (asymmetry), number of peaks (multi-modality), behavior in the tails,12
and data outliers.13

14
Frequency Distribution or Histogram15

The frequency distribution, or histogram, is a graphical approximation of the empirical PDF. 16
Frequency distributions can be plotted on both linear and log scales.  The general strategy for selecting the17
number of bins to partition the data is to avoid too much smoothing or too much jaggedness.  Equation 3-118
(U.S. EPA, 1999a) provides a starting point for estimating the number of bins based on the sample size19
(n).20

21
22
23
24

Probability Plotting25
Another useful method is probability plotting, also referred to as linear least square regression or26

regression on ordered statistics.  This technique involves finding a probability and data scale that plots the27
cumulative distribution function (CDF) of a hypothesized distribution as a straight line.  The corresponding28
linearity of the CDF for the sample data provides a measure of the goodness-of-fit of the hypothesized29
distribution.  The general approach involves sorting the sample data in ascending order and converting the30
ranks to percentiles.  The percentile value for the ith rank is calculated according to Gilbert (1987) as:31

32
33
34
35

An alternative formula is provided by Ott (1995):36
37
38
39
40

Plotting positions given by Equations 3-2 and 3-3 are special cases of the more general formula given by41
Equation 3-4 (Helsel and Hirsch, 1992):42

43
44
45
46

where a is a constant that varies from 0 (Equation 3-3) to 0.5 (Equation 3-2).47
48
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The percentiles are used to calculate the z-scores, which represent the number of standard deviations1
away from the mean that a particular datum lies assuming the data are normally distributed.  For normal2
distributions, the data are plotted against the z-scores; for lognormal distributions, the data are log-3
transformed and plotted against the z-scores.  In both cases, parameters of the distribution can be4
estimated from the least-squares regression line. 5
Both Gilbert (1987) and Ott (1995) provide excellent6
descriptions of the use of probability plotting to derive7
parameter estimates for a given distribution. 8
Probability plotting techniques with best-fit lines have9
been used to estimate parameters for a wide variety10
of distributions, including beta, Weibull, and gamma.11

12
3.4.4 PARAMETER ESTIMATION METHODS13

14
As a rule, there are often a number of different15

methods available for estimating a given parameter. 16
The most appropriate method to apply may17
require judgment, depending on the relative18
difficulty in applying a method for a particular19
parameter, as well as the desired statistical20
properties of the method.  The following simple21
example provides a useful analogy.  Suppose22
that the parameter of interest, A, is the total23
area of an approximately square exposure unit. 24
If the exposure unit is a perfect square, and the25
length of and one side (L1) is known, the area26
would be equal to L1

2 (i.e., for a square, A =27
Li

2).  Suppose L is unknown, but two28
independent measurements, X1 and X2, are29
available to estimate the length (see Exhibit 3-30
5).  If it is assumed that the random variable, L, 31
has a probability distribution with mean :, then32
the area of the square piece of property is A =33
:2

.  What is a reasonable estimate of the area34

(i.e., ) based on X1 and X2?  Three35 $ $A = µ 2

plausible methods for calculating are given36 $µ 2

below.37
38
39
40
41
42
43
44
45
46
47

Exposure
Unit

X2

X1

EXHIBIT 3-5
ESTIMATING THE AREA OF A

HYPOTHETICAL EXPOSURE UNIT

EXHIBIT 3-6

CRITERIA FOR EVALUATING PARAMETER

ESTIMATION METHODS*

Consistency A consistent estimator converges
to the “true” value of the
parameter as the number of
samples increases.

Efficiency An efficient estimator has minimal
variance in the sampling
distribution of the estimate.

Robustness A robust estimator is one that
works well even if there are
departures from the assumed
underlying distribution.

Sufficiency An sufficient estimator is one that
makes maximum use of
information contained in a data
set.

Unbiasedness An unbiased estimator yields an
average value of the parameter
estimate that is equal to that of
the population value.
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Because these three estimators will, as a rule,1
give different answers, it may be useful to set2
criteria for selecting which one gives the “best”3
answer.  Some of the statistical criteria that are4
used for this purpose are consistency, efficiency,5
robustness, sufficiency, and unbiasedness (see6
Exhibit 3-6).  It turns out, each method is relatively7
easy to implement, but the third method in the8

hypothetical example  is preferred because it is9 $µ c
2

a more efficient estimator.10
11

In many cases, particularly if a model is12
complex, potential estimators of the unknown parameters are not readily apparent.  To assist in developing13
estimators, several general methods have been developed.  Exhibit 3-7 lists some of the more common14
parameter estimation methods. 15

16
Perhaps the simplest method is the method of matching moments (MoMM), also called the method of17

moments.  MoMM is appropriately named, as it involves expressing the unknown parameters in terms of18
population moments and then “matching”, or equating the sample moments to the population moments. 19
For example, the sample mean ( ) and standard deviation (s) are estimators for the corresponding20 x
population parameters (: and F). 21

22
Maximum Likelihood estimation (MLE) is perhaps the most commonly applied method.  This is23

because it can be thought of as an estimate for which the observed data are most “likely”.  This concept24
is intuitively appealing.  It has also been demonstrated that MLE yields estimators that generally have25
good properties when evaluated by the criteria listed above.  In some cases, these estimators are not26
unbiased; however, this can often be accounted for by “adjusting” the estimator.  A familiar example of27
this adjustment is in estimation of the variance of a normal distribution.  The MLE for the variance is28
biased by a factor of ((n-1)/n), but this is easily corrected by multiplying the MLE by (n/(n-1)).  For some29
distributions, calculations of the MLE are straightforward.  For example, MLE for parameters of a normal30
distribution are given by the mean and standard deviation of the sample data, the same as MoMM.  MLE31
for parameters of a lognormal distribution are given by the mean and standard deviation of the log-32
transformed data, different from MoMM.  In general, MLE calculations are complex, and commercial33
software such as @Risk® and Crystal Ball® may be used.  Also, a more detailed discussion of the34
derivation and properties of MoMM and MLE can be found in the statistics literature (e.g., Chapter 5 of35
Mood and Graybill, 1963; Chapter 9 of Mendenhall and Scheaffer, 1973; Section 6.5 of Law and Kelton,36
1991; Section 5.6 of Cullen and Frey, 1999).  37

38
3.4.5 TRUNCATION39

40
Truncation refers to imposing a minimum and/or maximum value on a probability distribution.  The41

main purpose of truncation is to constrain the sample space to a set of “plausible values”.  For example, a42
probability distribution for adult body weight may be truncated at a minimum value of 30 kg and a43
maximum value of 180 kg in order to avoid the occasional selection of an unlikely value (e.g., 5 or 50044
kg).  By truncating the tails of a distribution, each risk estimate of a Monte Carlo simulation reflects a45
combination of plausible input values.  The advantage of truncating unbounded probability distributions in46
PRA is that central tendency and high-end risk estimates will not be biased by unrealistic values.  The47

EXHIBIT 3-7

PARAMETER ESTIMATION METHODS

• Method of Matching Moments
• Maximum Likelihood
• Minimum Chi-Square
• Weighted Least-Squares
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disadvantage is that the original parameter estimates of the non-truncated distribution are altered by1
constraining the sample space.  The bias in the parameter estimates increases as the interval between the2
minimum and maximum truncation limit is reduced.  For example, a normal distribution with an arithmetic3
mean of 100 may be fit to a data set; imposing a truncation limit of 300 may result in a truncated normal4
distribution with an arithmetic mean of 85.  The relationship between the truncated and non-truncated5
parameter estimates can be determined analytically (Johnson, Kotz, and Balakrishnan, 1995) or6
approximated using Monte Carlo simulations under both truncated and non-truncated scenarios.7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
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Table 3-1.  Theoretical bounds and parameter values for selected distributions.1

Probability Distribution2 Parameters1 Theoretical Bounds

Normal3 (:, F) (-4, + 4)

Lognormal4 (:, F) [0, + 4)

Weibull5 (", $) [0, + 4)

Exponential6 ($) [0, + 4)

Gamma7 (", $) [0, + 4)

Beta8 ("1, "2, a, b) [a, b]

Uniform9 (a, b) [a, b]

Triangular10 (a, m, b) [a, b]

Empirical ( bounded EDF)11 (a, b, {x}, {p}) [a, b]

a = minimum; b = maximum; : = mean; F = standard deviation; m = mode; 12
" = shape parameter; $ = scale parameter; x = value; p = probability.13

14
Truncation is typically considered when using unbounded probability distributions (e.g., normal,15

lognormal, gamma, Weibull) to characterize variability.  Table 3-1 gives the theoretical bounds for16
selected probability distributions that may be more commonly used in PRA.  Truncating the minimum17
value may also be appropriate for distributions whose minimum is defined as zero (e.g., lognormal,18
gamma, Weibull).  Truncation is generally less important when a PDF is used to characterize uncertainty19
in a parameter estimate (e.g., arithmetic mean), especially since distributions for uncertainty are often20
bounded by definition (e.g., triangular, uniform).  Bounded continuous distributions, such as the beta21
distribution or empirical distribution (see Section 3.4.2) are not subject to the parameter bias of truncation,22
although plausible minimum and maximum values must still be identified. 23

24
Identifying appropriate truncation limits that reflect “plausible bounds” for an exposure variable will25

often require judgment.  Given that most data sets represent statistical samples of the target population, it26
is unlikely that the minimum and maximum observed values represent the true minimum and maximum27
values for the population.  However, there may be physiological or physical factors that can aid in setting28
plausible truncation limits.  For example, the maximum bioavailability of chemicals in the GI tract is 10029
percent.  Similarly, the solubility of chemicals in aquatic environments (accounting for effects of30
temperature) will generally be less than the chemical solubility in water free of particulates.31

32
In general, sensitivity analysis can be used to determine if truncation limits are an important source of33

parameter uncertainty in risk estimates.  For exposure variables in the numerator of the risk equation, the34
maximum truncation limit is of greatest concern.  For exposure variables in the denominator of the risk35
equation, the minimum truncation limit is of greatest concern.  Details regarding the fit of the tails of the36
probability distribution and the effect of truncation on the parameter estimates should generally be37
included in the workplan.38

39
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3.4.6 MAXIMUM ENTROPY APPROACH1
2

In cases where limited information is available for a random variable, a general approach to selecting3
a distribution for variability or parameter uncertainty may be explored based on the principle of maximum4
entropy (Jaynes, 1957).  Maximum entropy is a technique for determining the distribution that represents5
the maximum uncertainty allowed by the available information and data (Vose, 1996).  Because the shape6
of the distribution is restricted by the information available, rather than by subjective selection of a7
distribution, this approach has recently received attention for use in exposure assessment (Lee and8
Wright, 1994).  Although the approach can be used to quickly define distributions that maximize9
uncertainty, the credibility of the distribution depends on the use of accurate, unbiased information.  In10
general, two or more of the following properties are specified in order to use the approach: minimum,11
maximum, mean, standard deviation, mode, and percentile value.  Table 3-2 summarizes the distribution12
shapes that represent the maximum entropy for the specified set of constraints.  For example, given13
estimates of the lower bound [min] and arithmetic mean [:] for a random variable, an exponential14
distribution would be recommended with 8 = 1/:.  Similarly, given estimates of a lower bound [min],15
upper bound [max] and most likely value [mode] for an arithmetic mean, a triangular distribution would be16
used to represent parameter uncertainty.17

18
Table 3-2.  Maximum entropy inference of distribution shapes 19
corresponding to available information.20

Information / Constraints21 Distribution Shape

[a, b]22 uniform

[a, m, b]23 triangular

[a, :, b] or [:, F, a, b]24 beta

[:, F]25 normal

[a, :] or [a = 0, percentile value]26 exponential

[a > 0, percentile value]27 gamma
a = minimum; b = maximum; : = mean; F = standard deviation; m = mode28

29
30

3.5 ASSESSING QUALITY OF THE FIT31
32

The quality of the fit of a distribution refers both to the statistical fit of a theoretical distribution to a33
data set (i.e., goodness-of-fit tests), and an evaluation of the sensitivity of the risk distribution to34
assumptions regarding the shape and bounds.  Together with graphical exploration (Section 3.4.3), this35
information may be useful when deciding whether or not to incorporate distributions with particular36
parameter estimates into a PRA.  37

38
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3.5.1 WHAT IS A GOODNESS-OF-FIT TEST?1
2

Goodness-of-fit (GoF) tests are formal statistical tests of the hypothesis that the data represent an3
independent sample from an assumed distribution.  These tests involve a comparison between the actual4
data and the theoretical distribution under consideration. 5

6
In statistical hypothesis testing the null hypothesis (H0) is assumed to be true unless it can be proven7

otherwise.  The “evidence” upon which we base a decision to reject or not to reject H0 is a random8
sample.  As a general rule H0 is a “straw man” and the outcome to be demonstrated is stated as the9
alternative hypothesis (Ha).  Typically, we seek to reject H0 in favor of Ha.  For example, with the two10
sample t-test, the null hypothesis is that the means of two populations are equal (not different) and the11
alternative is that they are different.  This is expressed as:  12

13
14
15
16
17

Most often, the hypothesis test is used to show that the means are not equal (i.e., reject H0 in favor of Ha)18
in order to state that there is a significant difference between the two populations at a specified19
significance level (e.g., " = 0.05).  Thus, the hypothesis test is often referred to as a significance test.20

21
The p-value in a statistical test is calculated from a sample and represents the probability of obtaining22

a value of the test statistic as extreme or more extreme if H0 is in fact true.  When the p-value is small it23
means either that we have witnessed an unusual or rare event (by chance we drew an unusual sample24
that resulted in the extreme value of the test statistic) or that the null hypothesis is not true.  Often a value25
of 0.05 or 0.01 is designated as a cutoff, or significance level ".  If the p-value is less than ", (e.g., p <26
0.05), the null hypothesis is rejected in favor of the alternative, and we state that the test result is27
statistically significant at level ".  This does not mean that we have proven Ha is true.  Rather, we are28
saying that based on our sample results, it is unlikely that H0 is true.  29

30
In a GoF test, the hypothesis test is set up the same way as a “traditional” hypothesis test, but the31

outcome is viewed a little differently.  In GoF tests, we generally seek to fail to reject H0 because the null32
hypothesis states that the data were obtained from a population described by the specified distribution33
(F0).  The alternative hypothesis is that the data were obtained from a population described by a different34
distribution.  In most applications of GoF techniques, the alternative hypothesis is composite - it gives little35
or no information on the distribution of the data, and simply states that H0 is false (d’Agostino and36
Stephens, 1986).  This can be expressed as:37

38
39
40
41
42

where F0 is a specific continuous distribution function, such as the CDF for a normal distribution.43
44

L Goodness-of-fit tests do not prove that the population could be described by the specified45
distribution, but rather that this assumption could not be rejected.  46

47
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Hence, for example, a p-value of 0.05 indicates that the assumption of a specified distribution could be1
rejected at " = 0.05.  Therefore, a larger p-value indicates a better fit and provides evidence that the2
specified distribution may be appropriate.  This guidance does not recommend an arbitrary cutoff for the3
p-value.  A risk assessor performing a GoF test generally should report the p-value and whether the fit is4
considered “good” or “poor”.  GoF tests are one tool among several to assess the quality of a distribution.5

6
3.5.2 WHAT ARE SOME COMMON GOODNESS-OF-FIT TECHNIQUES?7

8
The following GoF tests can also be found in most general statistical and spreadsheet software.  Both9

Crystal Ball® and @Risk® software present the results of chi-Square, K-S, and Anderson-Darling tests10
in their fitting routines. 11

12
Shapiro-Wilk Test13

The most widely used GoF test in risk assessment is the Shapiro-Wilk test for normality (Gilbert,14
1987).  This simple hypothesis test can determine whether or not a small data set (n < 50) is normally15
distributed.  The test can also be run on log-transformed data to assess whether the data are lognormally16
distributed.  D'Agostino's test may be used for samples sizes larger than those accommodated by the17
Shapiro-Wilk test (i.e., n > 50) (d’Agostino and Stephens, 1986).  In addition, Royston (1982) developed18
an extension of the Shapiro-Wilk test for n as large as 2000 (Gilbert, 1987).  19

20
Probability Plot Correlation Coefficient Test21

The correlation coefficient r (or the coefficient of determination , r2) between the data and the z-22
scores of a normal probability plot (Filliben, 1975; Helsel and Hirsch, 1992) is a similar to the W statistic of23
the Shapiro-Wilk test.  A detailed comparison of the Shapiro-Wilk test and the product correlation24
coefficient test is given by Filliben (1975) and d’Agostino and Stephens (1986).  Helsel and Hirsch (Table25
B-3, 1992) summarize critical r* values derived by Looney and Gulledge (1985) for the probability plot26
correlation coefficient test.27

28
Chi-Square Test29

The chi-square test is a general test that may be used to test any distribution (continuous or discrete),30
and for data that are ordinal (e.g., high / medium / low).  Chi-square is a measure of the normalized31
difference between the square of the observed and expected frequencies.  For example, by constructing a32
frequency distribution of the data with k adjacent bins, j = 1...k, the number of data points in the jth bin33
can be compared with the expected number of data points according to the hypothesized distribution. 34
Note that in the case of continuous, unbounded distributions (e.g., normal), the first and last intervals may35
include [- 4, a1] or [ak, + 4] (Law and Kelton, 1991).  The chi-square test is very sensitive to the chosen36
number and interval width of bins - different conclusions can be reached depending on how the intervals37
are specified.  Strategies for selecting bins (e.g., setting interval widths such that there are no fewer than38
5 data points expected per bin) are given in the statistical literature (d’Agostino and Stephens, 1986; Law39
and Kelton, 1991).  The test statistic is compared with a value of the chi-square distribution with {k - r -40
1} degrees of freedom, where r is the number of parameters of the hypothesized distribution (see Table41
3-1).  As described in Section 3.5.1, in general, higher p-values suggest better fits.42

43
Kolmogorov-Smirnov (K-S) Test44

The K-S test is a nonparametric test that compares the maximum absolute difference between the45
step-wise empirical CDF (see Figure 3-3) and the theoretical CDF.  Because the maximum discrepancy46
is compared with the test statistic, K-S is sometimes referred to as a supremum test (Cullen and Frey,47
1999).  In general, lower values of the test statistic indicate a closer fit.  The K-S test is most sensitive48
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around the median of a distribution, and, hence, it is of little use for regulatory purposes when the tails of1
distributions are most generally of concern (U. S. EPA, 1999a).  Although it does not require grouping2
data into bins like the chi-square test, critical values for the K-S test depend on whether or not the3
parameters of the hypothesized distribution are estimated from the data set (Gilbert, 1987; Law and4
Kelton, 1991).  The Lilliefors test was developed to surmount this problem when the hypothesized5
distribution is normal or lognormal (Gilbert, 1987).6

7
Anderson Darling Test8

The Anderson-Darling test assesses GoF in the tails (rather than the mid-ranges) of a PDF using a9
weighted average of the squared differences between the observed cumulative densities.  The Anderson-10
Darling test is sometimes referred to as the quadratic test (Cullen and Frey, 1999).  The test statistic11
should be modified based on sample size prior to comparison with the critical value.  Like the K-S test, in12
general, lower values of the test statistic indicate a closer fit (i.e., if the adjusted test statistic is greater13
than the modified critical value for a specified ", the hypothesized distribution is rejected).  The14
Anderson-Darling test is recommended by this guidance because it places more emphasis on fitting the15
tails of the distribution.16

17
3.5.3 CAUTIONS REGARDING GOODNESS-OF-FIT TESTS18

19
There are many statistical software programs that will run GoF tests against a long list of candidate20

distributions.  It is tempting to use the computer to make the choice of distribution based on a test statistic. 21
However, GoF tests have low statistical power and often provide acceptable fits to multiple distributions. 22
Thus, GoF tests are better used for rejecting poorly fitting distributions than for ranking good fits.  In23
addition, for many distributions, GoF statistics lack critical values when the parameters are unknown (i.e.,24
estimated from the data).  It is most appropriate to form an idea of the candidate distribution based on25
some well reasoned assumptions about the nature of the process that led to the distribution and then to26
apply a GoF test to ascertain the fit (U.S. EPA, 1999a).  Whenever possible, mechanistic and process27
considerations should inform the risk assessor's choice of a particular distribution rather than the results of28
a comparison of GoF tests (Ott, 1995).  In addition, the value of graphical evaluations of the fit cannot be29
overstated.30

31
3.5.4 ACCURACY OF THE TAILS OF THE DISTRIBUTION32

33
The tails of a distribution  (e.g., < 5th and  > 95th percentiles) for an input variable are often of greatest34

interest when characterizing variability in risk.  Distributions fit to data may not characterize the tails of35
the distribution in a way that represents the target population.  In general, the importance of uncertainty in36
the fit of the tails of particular distributions should be determined on a site-specific basis.  For exposure37
variables in the numerator of the risk equation, the upper tail is of greatest concern.  For exposure38
variables in the denominator of the risk equation, the lower tail is of greatest concern.  39

40
The shape of the input PDFs may have a minimal effect on the risk estimates in the tails of the41

probability distribution when the mean and variance of the input PDFs are held constant (Finely and42
Paustenbach, 1994; Hoffman and Hammonds, 1992).  In contrast, the tails of the input PDFs generally43
have a significant influence on the risk distribution.44

45
However, to ensure that the shape of a given PDF does not significantly affect the distribution of46

possible outcomes, a sensitivity analysis should generally be performed using various plausible shapes of47
the input PDF.  For example, an analysis could be tried two ways substituting a lognormal distribution for48
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EXHIBIT 3-8

IMPORTANT INFORMATION FOR REPORTING

PROBABILITY DISTRIBUTIONS 

C type of distribution and relevant parameter
values

C goodness-of-fit approach and statistics if
distribution was fit to data

C random sampling technique and number of
samples selected

C description of data source, including
whether the PDF represents variability or
uncertainty

C percentiles of the distribution that are
relevant to risk descriptors (i.e., on the risk
distribution)

a normal distribution in the description of one of the variables.  The sensitivity analysis would quantify the1
effect of this substitution on a chosen percentile of the output distribution (e.g., 95th percentile).  2

3
A common question when developing and evaluating Monte Carlo models is, “How many iterations is4

enough?”.  Since Monte Carlo sampling is approximately random, no two simulations will yield the same5
results (unless the same starting point, or seed, of the random number generator is used).  A rule of thumb6
is that the stability of the output distribution improves with increasing numbers of iterations, although there7
will always remain some stochastic variability.  The stability is generally better at the central tendency8
region of the output distribution than at the tails; therefore, more iterations may be needed when the risk9
management decision is associated with the higher percentiles (e.g., > 95th percentile).  Risk assessors are10
encouraged to run multiple simulations (with the same inputs) using different numbers of iterations in11
order to evaluate the stability of the risk estimate of concern.  The results of such an exercise should12
generally be reported to the Agency when submitting a PRA for review.   Note that while the  speed of13
modern computers has essentially eliminated the issue (e.g., 10,000 iterations of most 1-D MCA models14
can be run in less than 1 minute), it may still be an important issue for more complex modeling approaches15
such as Microexposure Event analysis and 2-D MCA (see Appendix E).16

17
3.6 PRESENTING INFORMATION ON PROBABILITY DISTRIBUTIONS18

19
Important information for reporting probability distributions in PRA is outlined in Exhibit 3-8.20

21
Graphics developed during the selection and evaluation process (Section 3.4.3) may be included in a22

PRA report.  Such graphs would be particularly useful for communicating potential uncertainties in23
variables that have the greatest influence on the risk estimates.   24

25
In general, each probability distribution used in a Monte Carlo analysis should be presented with26

sufficient detail that the analysis can be27
reproduced.  This information may be presented28
in tabular and/or graphical summaries.  Important29
information for a summary table would include a30
description of the distribution type (e.g.,31
lognormal, gamma, etc.), the parameters that32
define the distribution, a discussion on how the33
distribution was selected and the34
representativeness of the underlying data relative35
to the exposures being evaluated. If other36
alternatives were available, the report should37
generally discuss why a particular selection was38
made.  It should also be made clear if the39
distribution describes variability or uncertainty. 40
Graphical summaries of the distributions may41
include both PDFs and/or CDFs, depending on42
the type of information that is being conveyed43
(see Chapter 1, Exhibit 1-3).  The decision to44
exclude graphical summaries for some of the45
more common distributions generally should be46
made in consultation with the Agency risk47
assessor.48
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EXAMPLES OF FITTING DISTRIBUTIONS USING 1
GRAPHICAL METHODS, GOODNESS-OF-FIT, AND PARAMETER ESTIMATION2

3
Example 3-1.  Empirical Distribution Function (EDF) for Soil Ingestion Rates4

5
This hypothetical example illustrates how graphical methods can be used to select probability6

distributions for variability based on percentile data reported in the literature.  Table 3-3 gives the7
summary statistics that are reported by Stanek and Calabrese (1995) for average daily soil ingestion rates8
among young children.  Three options are explored for selecting a distribution: 1) empirical distribution9
function (EDF) represented by a step function; 2) linearized and extended EDF; and 3) continuous10
parametric distributions (beta and lognormal).   11

12
In order to specify an EDF, a plausible range (minimum and maximum) must be inferred using13

judgment.  Exposure factors such as ingestion rate are non-negative variables (i.e., minimum $ 0); given14
the relatively low value for the 25th percentile (10 mg/day), it is assumed that 0 mg/day is a reasonable15
minimum value for this example.  If children with pica for soil are excluded from the population of16
concern, the maximum value may be inferred from the relatively shallow slope at the high-end of the17
distribution.  That is, the 90th percentile is reported as 186 mg/day while the 99th percentile is 225 mg/day,18
an increase of only 40 mg/day; it is assumed that 300 mg/day is a plausible maximum value for this19
example.  Figure 3-3 illustrates the basic step-wise EDF represented by the reported percentile values, as20
well as the “linearized, extended EDF” (i.e., linear interpolation between reported values and extended21
lower and upper tails).  22

23
An alternative to relying on a linear interpolation between the percentile values is to fit a continuous24

probability distribution to the reported percentiles.  Since the original data are unavailable, standard25
goodness-of-fit (GoF) tests for the EDF, such as K-S and Anderson-Darling (d’Agostino and Stephens,26
1986), cannot be applied.  Note that computer software (e.g., Crystal Ball®, @Risk®) will provide test27
statistics and corresponding p-values, however, these results will (inappropriately) reflect the number of28
percentile values reported rather than the sample size of the original data.  Nevertheless, graphical29
methods may be employed to assess the adequacy of the fit of various PDFs.  In this example, a beta30
distribution and lognormal distribution were fit to the EDF using Crystal Ball®.  Figure 3-4 illustrates the31
CDFs for both distributions.  32
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The beta distribution appears to more closely match the reported percentile values, especially at the upper1
tail of the distribution.  The lognormal distribution has an unbounded maximum that, for this example,2
results in an extreme overestimate of the 95th and 99th percentiles.  The beta distribution, by definition, is3
bounded at 0 and 1, and rescaled in this example to a maximum of 364 mg/day. 4

5
6
7
8

Table 3-3.  CDFs for reported and fitted distributions for ingestion rate (mg/day).9
Summary10
Statistic11

Reported
Values

Linearized,
Extended EDF

Beta
Distribution1

Lognormal
Distribution2

minimum12 -- 0 0 0

25th percentile13 10 10 13 11

50th percentile14 45 45 44 31

75th percentile15 88 88 100 86

90th percentile16 186 186 165 216

95th percentile17 208 208 205 375

99th percentile18 225 225 322 3346

maximum19 -- 300 364 + 4
1 Parameters of best-fit beta distribution:  "1 = 0.63, "2 = 2.85, min = 0, max = 364.20
2 Parameters of best-fit lognormal distribution: : = 97.6, F = 291.8.21
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Example 3-2.  Variability in Lead Concentrations in Quail Breast Tissue1
2

This hypothetical example demonstrates how the combination of graphical methods, GoF tests, and3
parameter estimation techniques provides strong evidence for selecting and fitting a lognormal distribution. 4
Assume lead concentration in quail is an important variable for a food web model.  Site-specific data (n =5
62) are used to estimate inter-individual variability in concentration (Table 3-4).  The histograms in Figure6
3-5 show lead concentrations in quail breast tissue collected near a settling pond at a plating works. 7
Equation 3-1 indicated that 7 bins would be appropriate.  The result (top left panel, Figure 3-5) suggests8
that approximately 80 percent of the values are < 200 ppm and that the probability distribution for9
variability may be described by a non-negative, long tailed distribution (e.g., exponential, Weibull,10
lognormal, etc.).  However, additional bins are needed to better understand the low-end of the distribution. 11
After increasing the number of bins from 7 to 16 (top right panel, Figure 3-5), graphical evaluation12
continues to suggest that the distribution is unimodal right skewed.  Furthermore, the bottom panel of13
Figure 3-5 illustrates that increasing the number of bins would not provide better resolution of the low-end14
of the distribution.  For these data, 16 bins appear to provide a reasonable balance between too much15
smoothing and too much jaggedness.16

17
Probability plots can be used to visually inspect the goodness-of-fit of a specified distribution to the18

data, and, because the hypothesized distribution yields a straight line, the plots are particularly useful for19
evaluating deviations at the tails.  In addition, parameter estimates can be obtained from the regression20
lines fit to the data, as discussed below.  For this example, two lognormal probability plots are explored to21
evaluate how well the data can be described by a lognormal distribution (Figure 3-6).  The top panel gives22
the z-score on the abscissa (the “x” axis) and ln[concentration] on the ordinate (the “y” axis), while the23
bottom panel gives ln[concentration] on the abscissa and z-score on the ordinate.  Plotting positions for24
both methods were calculated using Equation 3-2. Equally plausible parameter estimates can be obtained25
from regression lines using either plotting method; however, the approach shown in the top panel may be26
easier to implement and interpret.27

28
Despite the relatively large sample size of n = 62, GoF tests generally fail to reject lognormality (i.e.,29

normality of the log-transformed data) in this example.  For the probability plot correlation coefficient test30
(Filliben, 1975; Looney and Gulledge, 1985), if r < r* at a specified ", normality is rejected.  For this31
example, r is 0.988, and r* is between 0.988 and 0.989 for n = 62 and " = 0.25; therefore, the p-value for32
the concentrations is approximately 0.25 and one fails to reject normality at " # 0.25.  D’Agostino’s test33
yields essentially the same conclusion, with a calculated Y value of -1.9166.  For this data set, with n = 6234
and " = 0.10, one rejects normality if Y < -2.17 or Y > 0.997 (see Table 9.7 in d’Agostino and Stephens,35
1986); therefore, since Y is within this interval, one fails to reject the normal distribution.  However, for "36
= 0.20, the rejection criteria is [Y < -1.64 or Y > 0.812], Y falls outside the low-end of the interval,37
resulting in a rejection of the normal distribution.  For this data set, the p-value associated with38
d’Agostino’s test is slightly less than 0.20 and one fails to reject normality at  " < 0.20.39

40
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Table 3-4.  Sample values of lead concentration (ppm) in quail breast muscle (n = 62).21
0.4522 15.8 36.6 57 91 173 265

2.123 16 40 59.6 94.2 175.6 322

5.424 16.7 40.1 61.4 99 176 490

7.825 21 42.8 62 107 177 663.4

7.826 23 44 64 109 205 703

8.827 24 46 64 111 239 1231

11.828 24.8 47 84.6 149 241 1609

1229 29.2 49 86.6 149 245 1634

1530 35.5 53 86.8 154 264

31

Figure 3-5.  Histograms of lead concentrations in quail breast muscle (n = 62).  The top left panel
shows the result with seven bins; the top right panel shows the result with sixteen bins, the bottom
panel uses bin widths of 10 ppm to highlight the lower tail (< 250 ppm) of the distribution.
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ln( ) [ ] [ ]x slope z= + intercept Equation 3-5
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Different methods for obtaining the parameter estimates for the lognormal distribution can be1
explored in this example.  For the lognormal distribution, Maximum Likelihood Estimate (MLE) and2
Method of Matching Moments (MoMM) simply requires calculating the mean and standard deviation of3
the log-transformed sample data.  For the lognormal probability plot method, the parameters can be4
obtained directly from the least squares regression line expressed as follows:5

6
7

such that exponentiating the intercept will give the geometric mean (GM) and exponentiating the slope will8
give the geometric standard deviation (GSD) (see footnote 3 of Table 3-5).  Both the MLE and MoMM9
estimates will generally match the arithmetic mean of the log-transformed data (i.e., intercept) determined10
from lognormal probability plots; however, estimates of the standard deviation (i.e., slope) will vary11
(Cullen and Frey, 1999).  In general, the probability plot method yields estimates of the standard deviation12
that are less than or equal to that of MoMM and MLE, and the results yield closer estimates as the13
correlation coefficient of the probability plot increases (Cullen and Frey, 1999).  Table 3-5 summarizes the14
parameter estimates using MLE, MoMM, and the two lognormal probability plotting techniques described15
above.  The corresponding parameter estimates for the untransformed data are also presented.  16

17
In this example, the strong linearity of the probability plots (r2 = 0.98) shown in Figure 3-6 is an18

indication that a lognormal distribution is a reasonable model for describing variability in concentrations. 19
The tails of the distributions fit the data fairly well, although the bottom panel suggests that the lognormal20
distribution slightly overestimates the lower tail.  Furthermore, the parameter estimates of the lognormal21
distribution using probability plotting closely match the estimates using MLE and MoMM.22

23
24
25
26
27
28
29
30

Table 3-5.  Parameter estimates for lognormal distribution of lead concentrations (ppm).31

Parameter Estimation32
Method33

Log-transformed
Data

Untransformed
Data3

mean [ ]$µ stdev [ ]$σ mean [ ]$µ stdev [ ]$σ
Maximum Likelihood34

Estimate (MLE)35
4.175 1.522 207 626

Method of Matching36
Moments (MoMM)37

4.175 1.522 207 626

Log Probability Plot138 4.175 1.507 203 597

Log Probability Plot239 4.175 1.543 214 670

1 Least squares regression line for Figure 3-6, top panel.40
2 Least squares regression line for Figure 3-6, bottom panel.41
3 For a lognormal distribution, the following equations can be used to convert parameters of the normal distribution of42
log-transformed data to corresponding parameters of the lognormal distribution of untransformed data.  Assume :*43
and F* are the arithmetic mean and standard deviation, respectively, for the normal distribution of log-transformed44
data.45
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Figure 3-6.  Lognormal probability plots of lead in mourning dove breast tissue.  Top panel gives z on
the abscissa and ln[concentration] on the ordinate.  Bottom panel gives ln[concentration] on the
abscissa and z on the ordinate.  Equally plausible parameter estimates can be obtained from regression
lines using either plotting method.  Bottom panel requires an additional step to express the equation that
yields parameter estimates [ln(x) = (slope) z + (y-intercept)], where the slope estimates the standard
deviation of ln(x) and the y-intercept (at z = 0) estimates the arithmetic mean of ln(x). 
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Example 3-3.  Variability in Meal Sizes Among Consuming Anglers1
2

A creel survey of anglers consuming contaminated fish was performed to estimate variability in fish3
meal sizes.  The anglers were asked how many people would eat their fish.  The lengths of the fish were4
measured and a regression equation was used to calculate the corresponding weights.  The portion of the5
fish mass that is consumed was assumed to be 40% (e.g., fillets).  Results given in Table 3-6 are6
expressed in units of grams of fish per meal.7

8
The appearance of the histograms (Figure 3-7) suggests that the sample (n = 52) may have been9

selected from more than one distribution.10
11

A normal probability plot of the meal sizes (Figure 3-8)12
shows a departure from linearity.  Specifically, there appears13
to be a “kink” in the probability plot at about 400 g/meal,14
suggesting that the sample may have been obtained from two15
unique distributions.  Both the Filliben test and Shapiro-Wilk16
test indicated a significant departure from normality at " =17
0.01.  Parameters may be read directly from the equations of18
the regression lines on the right hand panel of the graph. 19
MoMM and MLE gave similar estimates.20

21
22
23
24

25
 26

27

Figure 3-7.  Histograms of meal size (n = 52) among consuming anglers.  Left panel uses 7 bins, while
the right panel uses 14 bins.

28

Table 3-6.  Meal size (g/meal) (n = 52).
65 182 310 405
74 208 314 415
74 221 318 416
77 226 318 477
90 241 327 531

110 248 332 572
111 253 336 608
133 260 337 745
143 261 350 831
150 281 351 907
163 303 360 1053
163 305 365 1189
174 305 390 1208
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Figure 3-8.  Probability plot of meal size data from consuming anglers.  The left panel shows the
combined data, with a departure from linearity at ~ 400 g/meal.  The right panel shows the data split
between high consumers (top line) and low consumers (bottom line); note that separate lognormal
probability plots were reconstructed for both subsets of the data.
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1 Note, however, that this does not necessarily go the other way.  If we start with the assumption
that X and Y each have normal distributions, then it is not necessarily the case that the joint distribution of
X and Y is a bivariate normal.
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Example 3-4.  Bivariate Normal Distributions1
2

One approach that can be used to correlate two3
random variables is to specify a bivariate normal4
distribution.  A brief explanation of the bivariate5
distribution is presented followed by an example6
comparing assumptions of no correlation and perfect7
correlation.8

9
Conditional Normal Distributions10

Suppose that two random variables, X and Y,11
jointly follow a bivariate normal distribution with12
means :X and :Y, variances F2

X and F2
Y , and13

correlation coefficient D.  Then the marginal14
distribution of X is normal with mean :X and15
variance F2

X, and the marginal distribution of Y is16
normal with mean :Y and variance F2

Y
1.17

18
Assume we are interested in the conditional distribution of X given a certain value for Y.  For19

example, if X and Y are positively correlated, we would expect that relatively high values of X tend to20
correspond with relatively high values of Y.  The conditional distribution of X given that Y = y, where y21
represents a specific value for the random variable Y, is a normal distribution with:22
Note that the mean of the conditional distribution of X is a function of the given value of Y but the23
variance depends only on the degree of correlation.  24

25
26
27
28
29
30
31

Likewise, the conditional distribution of Y given that X = x, is also normal with:32
33
34
35
36
37
38
39
40

These general equations can be used to generate a correlated pair (X, Y), as described below.41

THIS EXAMPLE PRESENTS....

1. description of the assumptions associated
with the bivariate normal distribution;

2. guidance on simulating the bivariate
normal distribution for two random
variables; and

3. application of bivariate normal to a simple
linear regression equation relating
contaminant concentrations in soil and
dust (see Figure 3-9).  Results are
compared to the assumption of no
correlation and perfect correlation.
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X ZX X= + ⋅µ σ 1 Equation 3-8

Y ZY Y= + ⋅µ σ 2 Equation 3-9

Y Z ZY Y= + ⋅ + − ⋅





µ σ ρ ρ( )1
2

21 Equation 3-10

Y XY
Y

X
X= + −µ ρ

σ
σ

µ( ) Equation 3-11

Y ZY Y= + ⋅ ⋅µ ρ σ 1 Equation 3-12

General Approach for Correlating X and Y1
To generate a correlated pair (X, Y), first generate X using a random value Z1 from the standard2

normal distribution:3
4
5
6

Next, express Y as a function of the conditional mean and variance of Y given X and a second standard7
normal variate Z2:8

9
10
11
12

and generate a correlated Y by plugging Equation 3-7 into Equation 3-9.  Using algebra, the combined13
equations yield the following simplified expression for generating Y:14

15
16
17
18

The important component of this equation is that two random variates are needed (Z1 and Z2).19
20

Special Case Approach for Perfect Correlation between X and Y (DD  = 1.0)21
An alternative, but less general approach would be to obtain Y by first generating a normal variate X22

(Equation 3-8) and then plugging that value into the regression equation of Y on X to obtain the associated23
value of Y.  The regression of Y on X for a bivariate normal is given by Equation 3-11:24

25
26
27
28
29

Plugging Equation 3-8 into Equation 3-11, yields the following simplified expression for generating Y:30
31
32
33
34
35

While Equation 3-11 maintains a correlation between X and Y, it will underestimate parameter uncertainty36
by the factor [FY (1 - D2) Z2].  Equations 3-10 and 3-12 are equal only for the special case of perfect37
correlation (D = 1.0) between X and Y.  Therefore, the more general bivariate normal distribution38
approach (given by Equations 3-8 to 3-10) is recommended for correctly correlating X and Y because it39
provides a more robust estimate of parameter uncertainty.40

41
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ZnD ZnS= + ⋅β β0 1 Equation 3-13

µ β

µ β

σ σ

σ σ

σ

ρ
σ σ

b

b

b
i

i

b
i

i

b b

X

n X X

X X

Cov b b
X

X X

Cov b b

0 0

1 1

2 2
2

2

2
2

2

0 1

2

2

0 1

0

1

0 1

=

=

=
−

=
−

= − ⋅
−

=
⋅

∑
∑

∑

∑

( )

( )

( , )
( )

( , )

s
Y b b X

n
i i2 0 1

2

2
=

− + ⋅

−
∑ ( ( ))

Equation 3-14

Example: Simulation of a Bivariate Normal Distribution for Parameter Uncertainty1
Suppose that we wish to simulate uncertainty in the relationship between zinc concentrations in soil2

(ZnS) and dust (ZnD).  For simplicity, assume a simple linear regression equation is selected as an3
appropriate model to relate the two exposure variables:4

5
6
7
8
9

where $0 and $1 are the intercept and slope parameters that describe the regression line.  For this10
example, $0 represents X and $1 represents Y in Equations 3-6 to 3-12.  Let b0 and b1 be the least squares11
estimates of $0 and $1, respectively.  Then, under the usual assumptions regarding the regression model,12
b0 and b1 have a joint normal distribution with the following parameters:13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

where Xi is the ith observation of ZnS and Yi is the ith observation of ZnD.  In addition, the population33
variance F2 is estimated by the sample variance s2:34

35
36
37
38
39

Application of Bivariate Normal Distribution to Correlate Concentrations of Zinc in Soil and Dust40
41

Assume random sampling of soil and dust zinc concentrations (ZnS, ZnD) occurs in a residential area. 42
Composite samples of soil and dust are collected from 21 locations such that samples are paired (i.e.,43
each soil sample is co-located with a dust sample) (Table 3-7).  First the relationship between the ZnS and44
ZnD is evaluated using simple least-squares regression.  Next, the bivariate normal distribution for the45
slope ($1) and intercept ($0) is determined, yielding an arithmetic mean and standard deviation for each46
parameter (:b0, F2

b0, :b1, and F2
b1), and correlation coefficient D between $1 and $0.  In this context, the47

bivariate normal distribution may be considered a distribution for uncertainty in the parameter estimates.48
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1
Three simulation methods are employed to2

demonstrate the effect of assuming a bivariate3
normal distribution for parameters vs. perfect4
correlation, or independent parameters.  Specifically:5

6
1. The slope and intercept of the regression line are7

described by a specific form of the bivariate8
normal distribution (i.e., follow Steps 1, 2 in9
Exhibit 3-9, and use Equation 3-10 instead of10
Step 4); 11

12
2. The slope and intercept of the regression line are13

described by a general form of the bivariate14
normal distribution (i.e., follow Steps 1-4 in15
Exhibit 3-9); and16

17
3. The slope and intercept of the regression line are18

described by independent normal distributions19
(i.e., follow Steps 1-4 in Exhibit 3-9, but omit the20
correlation coefficient D in Steps 2 and 4).21

22
Fore each approach, Monte Carlo simulations with i = 5000 iterations were run to determine the set of 23

parameter values ($0, $1) for a simple linear regression equation. Typically, the uncertainty in the24
parameter estimates is not accounted for when simple linear regression equations are used to related two25
exposure variables in a model.  Such an approach may fail to account for important sources of parameter26
uncertainty.  Figure 3-10 (middle panel) illustrates the preferred approach for characterizing parameter27
uncertainty based on the bivariate normal distribution. {Note that the correlation coefficient relating the28
intercepts and slopes generated from the simulation is consistent with the correlation coefficient that29
describes the bivariate normal distribution; this is a good check that the simulation was set up correctly30
and run for a sufficient number of iterations.} These results are contrasted with results using a form of31
the bivariate normal (Equation 3-10) that underestimates uncertainty (top panel) unless parameters are32
perfectly correlated.  In addition, the simplistic approach of sampling from independent normal33
distributions (bottom panel), yields a “shot gun” scatterplot.  Sampling from independent normal34
distributions results in unlikely extreme combinations of the slope and intercept more often than the35
correct bivariate normal approach; propagating this bias through a risk model may severely bias estimates36
of uncertainty in risk. 37

38
39
40
41
42
43
44
45
46
47
48

EXHIBIT 3-9

STEPS FOR SIMULATING UNCERTAINTY IN
LINEAR REGRESSION EQUATION USING A

BIVARIATE NORMAL DISTRIBUTION TO
CORRELATE PARAMETERS  (#0, #1)

1. Select Z1 from a standard normal
distribution Z~ N(0, 1);

2. Calculate $0 using Equation 3-8, where
X =  $0, :x = :b0, and F2

x = F2
b0;

3. Select Z2 from a standard normal
distribution Z~ N(0, 1); and

4. Calculate $1 using Equation 3-10, where
Y = $1, :y = :b1, F2

y = F2
b1, D =

correlation between $0 and $1.
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Cov (B0, B1)28 -4.2428

r29 -0.8254

30
31

Figure 3-9.  Simple linear regression of zinc concentrations in

Table 3-7.  Zinc concentrations in paired (i.e., co-located) soil and dust
samples (ppm) for n = 21 locations.

Sample Soil (Xi) Dust (Yi) Sample Soil (Xi) Dust (Yi)

1 120 216 12 560 200

2 190 149 13 560 256

3 270 83 14 720 496

4 285 508 15 800 239

5 310 215 16 880 203

6 340 219 17 910 757

7 350 203 18 1035 676

8 380 101 19 1445 426

9 440 178 20 1600 522

10 480 232 21 1800 276

11 560 199
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35
36
37
38
39
40
41
42
43 Figure 3-10.  Results of Monte Carlo simulation (n = 5000 iterations) to estimate the slope and

intercept of a regression equation.  Top panel reflects the bivariate normal distribution for the special
case that fails to capture the parameter uncertainty; middle panel reflects the preferred bivariate normal
distribution with D = -0.825 based on empirical paired data; bottom panel reflects sampling from
independent normal distributions.

44
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EXHIBIT 4-1

GENERAL EQUATION FOR ESTIMATING
EXPOSURE TO A SITE CONTAMINANT

      Eq. 4-1

where,
I = daily intake
C = contaminant concentration

CR = contact rate (ingestion, inhalation,
dermal contact)

EF = exposure frequency
ED = exposure duration
BW = body weight
AT = averaging time

CHAPTER 4 (PART 1 OF 2)1

2

USING PROBABILISTIC ANALYSIS IN HUMAN HEALTH RISK ASSESSMENT3
4
5

4.0 INTRODUCTION6
7

This chapter outlines the basic concepts associated with the use of probabilistic analysis in human8
health risk assessments.  At this time, national policy recommends that probabilistic analysis for human9
health assessments generally should be confined to the exposure variables (i.e., concentration, exposure10
frequency, exposure duration, etc.).  Therefore, probabilistic analysis for human health risk assessments11
generally should not model variability or uncertainty in the cancer slope factor (CSF), reference dose12
(RfD), or reference concentration (RfC). 13

14
This chapter provides guidance on characterizing variability and uncertainty in exposure variables.  A15

discussion about variability and uncertainty in the concentration term is also included in Section 4.1.  To16
aid in the development and review of probabilistic risk assessments, examples of input assumptions are17
provided.  A recommended checklist for reviewing a PRA is provided in Section 6.2, Table 6-1.18

19
4.1 CHARACTERIZING VARIABILITY IN EXPOSURE VARIABLES20

21
The general equation (Exhibit 4-1) used for22

calculating exposure (i.e., average daily intake) is23
shown in the accompanying text box.  In PRA,24
the only modification is that probability25
distributions rather than single values (i.e., point26
estimates) are specified for one or more variables27
to characterize variability or uncertainty (see28
Chapter  3).  A Monte Carlo simulation is29
executed by repeatedly selecting random values30
from each of these distributions and calculating31
the corresponding exposure.  Each input can be32
verified by closely examining the results of the33
simulation.  If the complete set of random values34
for an exposure variable are sorted and plotted on35
a graph, the resulting frequency distribution should36
provide a close approximation of the original37
distribution that was specified.  38

39
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EXHIBIT 4-2

DEFINITIONS FOR CHAPTER 4

95% UCL for mean -  The 95 percent upper confidence limit (UCL) for a mean of a population is
defined as a value that, when repeatedly calculated for randomly drawn subsets of size (n),
equals or exceeds the true population mean 95% of the time.  Although the 95% UCL
provides a conservative estimate of the mean, it should not be confused with a 95th 
percentile.  As sample size increases, the difference between the UCL for the mean and the
true mean decreases, while the 95th percentile of the distribution remains relatively
unchanged, at the upper end of the distribution. 

95th percentile - The number in a distribution such that 95% of the values in the distribution are less
than the number and 5% are greater.

ARARs - Applicable or relevant and appropriate requirements.  The NCP (U.S. EPA, 1990) states
that ARARs shall be considered in determining remediation goals.  A maximum contaminant
level (MCL) from the Safe Drinking Water Act is an example of an ARAR.  If an ARAR
meets the requirements of the NCP for protectiveness, it may be selected as a site-specific
cleanup level.

Arithmetic Mean (AM) - A number from a distribution or sample that is the average of all members
of the sample.  Usually obtained by summing all the members in the sample and dividing by
the number of members.

Assessment Endpoint - The specific expression of the population or ecosystem that is to be
protected.  It can be characterized both qualitatively and quantitatively in the risk
assessment.

Bayesian Analysis - Also called subjective probability.  These methods start with a description of the
probability of an event as the degree of belief or confidence in that event occurring, given
some state of knowledge.  Bayesian methods combine subjective probabilities with data to
arrive at posterior probabilities.  Bayesian analysis provides a way of integrating professional
judgement with data in a rigorous mathematical framework (Appendix E). 

Box Plot - Graphical representation showing the center and spread of a distribution, sometimes with
a display of outliers.  This guidance uses boxplots to represent the following percentiles,
where the box represents the 25th and 75th percentiles, and the hinge represents the 5th and
95th percentiles.  Other definitions for the box and hinge may be used.

Central Tendency Risk/ Central Tendency Exposure (CTE) - A risk descriptor representing the
average or typical individual in the population, usually considered to be the arithmetic mean
or median of the risk distribution.

1
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EXHIBIT 4-2  (CONT’D)

DEFINITIONS FOR CHAPTER 4

Parameter -  value that characterizes a feature of a population.  Parameters that define a probability
distribution for a random variable commonly characterize the location, scale, shape, or
bounds of the distribution.  For example, a truncated normal probability distribution may be
defined by four parameters: arithmetic mean [location], standard deviation [scale], and min
and max [bounds].  It is important to distinguish between an exposure variable (e.g.,
ingestion rate) and a parameter (e.g., arithmetic mean ingestion rate). 

Reasonable Maximum Exposure (RME) - The highest exposure that is reasonably expected to occur
at a site (U.S. EPA, 1989a).  The intent of the RME is to estimate a conservative exposure
case (i.e., well above the average case) that is still within the range of possible exposures.

1
2

Figure  4-1 shows a typical example of an input distribution for drinking water ingestion rate.  In the3
graph, the height of the bars represents the relative frequency of ingestion rates in the population and the4
spread of the bars is the varying amounts of water ingested per day.  The frequency distribution was5
generated by randomly sampling (10,000 times) from a lognormal probability distribution function (PDF);6
the type or shape of the distribution is set by the user.  When the frequency distribution is overlain with7
the lognormal PDF, it becomes clear that 10,000 iterations yields a close approximation of the theoretical8
distribution.  The difference between the frequency distribution and the parametric distribution will9
approach zero as the number of random samples approaches infinity.  With the speed of modern10
computers, 10,000 random samples can be selected in a minute.  Guidance on selecting and fitting11
distributions to data is presented in Chapter 3.12

13
Each probability distribution used in a Monte Carlo analysis gen should be presented with sufficient14

detail that the analysis can be reproduced.  This information may be presented in tabular and/or graphical15
summaries.  Important information for a summary table would include a description of the distribution type16
(e.g., lognormal, gamma, etc.), the parameters that define the distribution, a discussion on how the17
distribution was selected and the representativeness of the underlying data relative to the exposures being18
evaluated.  If other alternatives were available, the report should discuss why a particular selection was19
made.  It should also be made clear if the distribution describes variability or uncertainty.  Graphical20
summaries of the distributions may include both PDFs and CDFs, and should generally be used to21
document distributions that characterize site-specific data.  The decision to exclude graphical summaries22
for some of the more common distributions should be made in consultation with the Agency risk assessor.23
 24

The calculation of risk involves sampling from each of the exposure variable distributions and then25
incorporating toxicity; this process results in an output of risk that is also a distribution.  When the26
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Figure 4-1.  Results of Monte Carlo simulation yielding a frequency distribution
from 10,000 random samples based on a theoretical lognormal PDF (parameters
given on graph).  The distribution represents inter-individual variability in adult
drinking water intakes and is characterized by two parameters - typically Log
~(GM, GSD) or Log ~(AM, SD).

calculation of risk (or any other model endpoint) is repeated many times using Monte Carlo techniques to1
sample the variables at random, the resulting distribution of risk estimates can be displayed in a similar2
fashion.  The type of summary graph used to convey the results of a Monte Carlo analysis depends on the3
risk management needs.  For example, Chapter 1 (Figure 1-2) illustrates the histogram of risk estimated4
from a Monte Carlo simulation, and the corresponding PDF for risk.  The height of each bar indicates the5
relative probability of a given risk value.  This type of summary can effectively illustrate the relationship6
between the point estimate of RME risk, which can be placed on this graph, and the probabilistic estimate7
of the high-end risk range.8

9
In addition, the Cumulative Distribution Function (CDF) can be especially informative for illustrating10

the percentile corresponding to a particular risk level of concern (e.g., 1x10-6).  Figure 4-2 illustrates both11
the PDF and CDF for risk.  Factors to consider in deciding whether to display the PDF or CDF are12
discussed in Chapter  1.  When in doubt about the appropriate type of summary to use, provide both the13
PDF and CDF for all risk distributions.  At a minimum, each summary output for risk should provide the14
risk descriptors of concern (e.g., 50th, 90th, 95th, and 99.9th percentiles of the PRA; CTE and RME of the15
point estimate risk assessment). 16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
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Figure 4-2 (part 1 of 2).  Hypothetical PRA results showing a probability density function (PDF, top25
panel) and cumulative distribution function (CDF, bottom panel) for cancer risk with selected summary26
statistics for central tendency and high-end percentiles.  The PDF rises to a maximum of 0.055 at a risk27
of about 5E-07.  The CDF rises to a maximum cumulative probability of 1.0.  The CDF clearly shows that28
the level of regulatory concern of 1x10-6 falls between the 90th and 95th percentiles of the risk distribution.29
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CHAPTER 4 (PART 2 OF 2)1

2

USING PROBABILISTIC ANALYSIS IN HUMAN HEALTH RISK ASSESSMENT3

CONTINUED4
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Figure 4-2 (part 2 of 2).  Hypothetical PRA results showing a probability density function (PDF, top33
panel) and cumulative distribution function (CDF, bottom panel) for cancer risk with selected summary34
statistics for central tendency and high-end percentiles.  The PDF rises to a maximum of 0.055 at a risk35
of about 5E-07.  The CDF rises to a maximum cumulative probability of 1.0.  The CDF clearly shows that36
the level of regulatory concern of 1x10-6 falls between the 90th and 95th percentiles of the risk distribution.37
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4.2 CHARACTERIZING UNCERTAINTY IN EXPOSURE VARIABLES1
2

PRA can also provide quantitative information on the confidence associated with a risk estimate to3
assist the risk manager in choosing an appropriate  percentile in the RME range of the estimated risk4
distribution.  This choice will consider the uncertainty in the risk estimate (see Chapter 7).  Most site-5
specific PRAs will focus on the variability in exposure among a population to arrive at a distribution of6
risks for that population.  From the distribution of risks for the population, the risk to a single hypothetical7
individual generally will considered in making a remedial decision.8

9
Questions will almost certainly arise concerning the confidence or certainty around risk estimates. 10

For example, how much confidence do we have that enough soil samples were collected to adequately11
characterize contaminant concentrations on site?  In general, probability distributions are used to12
characterize either variability or uncertainty in an exposure variable.  The PDF should capture the nature13
of the exposure variable.  Some aspects to consider in selecting and fitting PDFs are presented in14
Chapter 3.15

16
A more complex Monte Carlo simulation technique, which distinguishes variability from uncertainty in17

risk estimates, is two dimensional Monte Carlo analysis (2-D MCA) (see Appendix E).  Figure 4-318
provides hypothetical results of a 2-D MCA where a confidence interval has been quantified around a19
95th percentile of variability in risk (also see Chapter 2, Figure 2-2).  In Areas 1 and 3, the confidence20
intervals are fairly narrow, which suggests a high degree of confidence that the risks in Area 1 are21
negligible, and the risks in Area 3 may require some type of action.  The fairly broad confidence intervals22
around the risk estimates for Areas 2 and 4 give us less confidence in the results.  Of course, the level of23
confidence in the risk estimate should be considered and may affect the risk manager’s decision.24

25
2D-MCA cannot be applied at all sites.  However, this simulation technique may be useful when a26

risk assessor has sufficient data and/or a clear understanding of one or more exposure variables such that27
uncertainty may be quantified.  As discussed in Chapter 3, often there is uncertainty in the probability28
distribution that best describes the variability in an exposure factor.  In such cases, this guidance strongly29
recommends not using 2-D MCA to select from the candidate distributions at random (i.e., according to30
ad hoc probabilities).  Rather, separate 1-D MCA simulations should be run with the different candidate31
models, and the risk distribution from each should be compared to evaluate the importance of this source32
of uncertainty.  In general, 2-D MCA should be used to propagate parameter uncertainty in probability33
distributions for multiple exposure factors rather than explore uncertainty in the choice of probability34
distributions used to characterize variability.35

36
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Figure 4-3.  Box and whisker plots characterizing uncertainty in the RME risk estimates (95th percentile9
of the Hazard Index) at four locations.  The box represents the interquartile range (25th to 75th10
percentiles) while the whiskers represent the 90% confidence limits (5th to 95th percentiles). 11

12
13
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4.3 CHARACTERIZING VARIABILITY AND UNCERTAINTY IN THE CONCENTRATION TERM1
2

Often, an important source of variability and uncertainty in risk assessment is the concentration of one3
or more contaminants in the various exposure media.  When specifying either a point estimate or a4
distribution for the concentration term, it is important to distinguish between variability and uncertainty.  In5
any risk assessment, the concentration term will necessarily reflect an assumption about (1) the spatial6
and temporal variability in contamination and (2) the behavior of the receptor.  7

8
The concentration term is linked to the concept of an exposure unit (i.e., the geographical area in9

which a receptor exists and may be exposed to a contaminated medium during the time period of interest). 10
Environmental sampling will provide information about the contamination within an exposure unit.  Site-11
specific information regarding activities of receptors may guide assumptions about the receptor’s contact12
with exposure media.13

14
L An exposure unit in a Superfund risk assessment is the geographical area about15

which a receptor moves and contacts a contaminated medium during the period of16
the exposure duration.  Either random or non-random movement and contact can17
be modeled.18

The size of the exposure unit should be appropriate for the receptor being considered.  For example,19
depending on the receptor’s movement and activities, an exposure unit may be as small as a child’s play20
area (e.g., sand box) or as large as an ecological receptor’s territory size (e.g.,  industrial facility).  In21
some cases, it may be appropriate to define multiple exposure units based on the receptor’s activity22
patterns, the chemicals of potential concern, and the potential exposure media.  For example, residential23
exposures to children may reflect exposures via soil and dust ingestion both at the primary residence and24
at a day care facility.  25

26
Over a short period of time (e.g., days), contaminant concentrations contacted by a receptor are likely27

to vary depending on the spatial variability of contamination and the movements of the receptor. Similarly,28
different individuals may be exposed to different concentrations based on inter-individual variability in29
activity patterns.  If information regarding activity patterns is unavailable, receptors are typically assumed30
to exhibit random movement such that there is an equal probability of contacting any area within the31
exposure unit.  In addition, in Superfund risk assessments, the toxicity criteria are often based on health32
effects associated with chronic exposure (e.g., lifetime risk of cancer following chronic daily intake over a33
period of 30 years).  Hence, the most appropriate expression or modeling approach for the concentration34
term is one that characterizes the long-term average exposure point concentration within the exposure35
unit. 36

37
The concepts of long-term exposure and random access are most easily envisioned when soil is the38

contaminated medium.  One can think of the receptor moving within the exposure unit while the soil39
remains fixed.  With groundwater, exposure occurs at a fixed point in space (the wellhead) and40
concentrations may change with time.  With consumption of contaminated fish, both the contaminated41
medium and the exposure point change throughout the exposure duration.  For example, fish populations42
can change over time and anglers may fish from different locations within a lake.  Nonetheless, the long-43
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term random exposure, as represented by an arithmetic mean, may be applied to any environmental1
medium to derive a concentration term.  Long-term sampling, fate-and-transport modeling or other2
techniques may be used to evaluate present and future contaminant concentrations.3

4
Characterizations of the concentration term in both point estimate and probabilistic risk assessment5

generally focus on uncertainty.  The numerous potential sources of uncertainty in the estimate of the true6
mean concentration can be grouped into the following two broad categories:7

8
1. Uncertainties in the sample data.  A limited number of measurements in the sample are used to make9

inferences about the true arithmetic mean concentration and the spatial distribution of concentrations10
at a site.  Uncertainties may arise from many factors, including both sampling variability and11
measurement error.12

13
2. Uncertainties in the behavior of the receptor.  Even in the case of extremely well characterized sites,14

it remains uncertain whether the receptor will contact the environmental medium in a temporal and/or15
spatial distribution that can be adequately represented by the environmental samples collected. 16

 17
The correspondence between the concentration contacted by the receptor and that represented by18

sampling is a function of both the site characterization and the knowledge of the behavior of the receptor. 19
A lack of knowledge in both categories accounts for the uncertainty in the concentration term.  20

21
4.3.1 SPECIFYING A DISTRIBUTION FOR THE CONCENTRATION TERM WHEN EXPOSURE IS RANDOM22

23
If a receptor’s contact with the contaminated medium within an exposure unit is truly random, then24

the receptor can be expected to contact all parts of the contaminated medium for an equal amount of25
time.  In this case, the long-term average exposure concentration experienced by the receptor will be26
adequately represented by the arithmetic mean.  This is true regardless of the underlying distribution of27
the environmental sampling data (e.g., lognormal, normal, beta, mixed).  Inter-individual variability in the28
long-term average exposure concentration within the receptor population will be minimal under these29
assumptions.30

31
Methods for characterizing uncertainty are summarized in Table 4-1.  The methods are briefly32

discussed in this chapter and presented in more detail in Appendix D. 33
34

Single Point Estimates for Uncertainty35
36

In conventional point estimate risk assessments, uncertainty in the concentration term is characterized37
by the 95% UCL for the arithmetic mean.  EPA’s Supplemental Guidance to RAGS: Calculating the38
Concentration Term (U.S. EPA, 1992) recommends using the Student-t statistic to calculate the UCL39
for a normal distribution, and the H-statistic when the data set appears lognormally distributed. 40
Alternatively, statistical resampling techniques, such as the bootstrap and jacknife, can be used without41
selecting and fitting a probability distribution to the sample (U.S. EPA, 1997a).  These techniques are42
sometimes referred to as “distribution free”, and add considerable flexibility by characterizing uncertainty43
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in any summary statistic for the concentration term (e.g., arithmetic mean, median, or selected1
percentiles).  Parametric and nonparametric bootstrap techniques are generally not a substitute for good2
site sampling (refer to data quality objectives guidance, U.S. EPA, 1993b).  A small sample will high3
variance will yield poor parameter estimates, especially for high-end percentiles (e.g., > 90th percentile),4
no matter which technique is used.  Each of these methods of calculating the 95% UCL apply equally to5
PRA, and may provide measures of parameter uncertainty in the risk model.6
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1
Table 4-1.  Methods for characterizing uncertainty in the concentration term.2

Approach3 Example of 
Model Input

Primary 
Use in
PRA

Example of 
Model Output

Single Point4
Estimate5

• 95% UCL 1-D MCA1 • PDF for variability in risk,
calculated using the 95% UCL
for the concentration term

Multiple Point6
Estimates7

• 95% LCL
• sample mean 
• 95% UCL 

1-D MCA1 • Three PDFs for variability in
risk, representing the 90%
confidence interval for each
percentile of the risk distribution. 
The 90% CI only accounts for
uncertainty in the
concentration term, not any
other exposure variables.

Parametric8
Probability9
Distribution for10
Uncertainty11

Triangular PDF with
• min = 95% LCL
• mode =  sample mean
• max = 95% UCL

2-D MCA • A family of PDFs for variability
in risk from which the 90%
confidence interval can be
calculated for each percentile of
the risk distribution.   The 90%
CI reflects uncertainty in one or
more variables, including the
concentration term

Nonparametric12
Probability13
Distribution for14
Uncertainty15

Bootstrap estimate of the
uncertainty distribution
(see Appendix D)

2-D MCA • same as parametric probability
distribution for uncertainty

16
1 The probability distribution(s) for variables (other than the concentration term) may characterize either parameter uncertainty17
(for a 1-D MCA of uncertainty) or variability (for a 1-D MCA of variability).18

19
20
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Multiple Point Estimates for Uncertainty1
2

In general, when characterizing variability and uncertainty simultaneously in PRA, RAGS Vol. 33
recommends using a 2-D MCA (see Section 4.2).  This approach allows probability distributions for4
variability and probability distributions for parameter uncertainty to be characterized and propagated5
separately in a Monte Carlo model.  The box plots for HQ shown in Figure 4-3 are examples of the output6
from a 2-D MCA.  While this type of information can be useful for making risk management decisions, as7
discussed in Chapter 1 (Figure 1-4), 2-D MCA may involve additional time and effort that may not be8
warranted for every site.9

10
If parameter uncertainty in a single variable is of interest, multiple 1-D MCA simulations can yield the11

same results a 2-D MCA simulation.  The advantage of running multiple 1-D MCA simulations is that it12
usually takes  less time and effort.  If parameter uncertainty for more than one variable is of interest,13
multiple point estimate calculations would not be sufficient to model the numerous possible combinations14
of input values; 2-D MCA would be the recommended choice.  In practice, while there is uncertainty with15
each parameter estimate, sensitivity analyses (Chapter 2) may reveal that most of the uncertainty is16
attributable to a single parameter, such as the concentration term.  17

18
Using a hypothetical example, assume that a risk assessor wishes to estimate the 90% confidence19

interval for the 95th percentile risk based on uncertainty in the true mean concentration.  For a 2-D MCA,20
the 90% confidence interval corresponds with the interval on the distribution for uncertainty in the risk21
estimate that is bounded by the 5th and 95th percentiles.  Since there is only one source of parameter22
uncertainty, the 5th and 95th percentiles for uncertainty in risk will directly correspond with the 5th and 95th23
percentiles for uncertainty in the concentration term.  The risk distribution obtained with the mean will24
represent the most likely risk estimate and the distributions obtained with the upper and lower bounding25
values will represent the 90% upper and lower confidence limits of the risk distribution.  Percentiles of the26
distribution for uncertainty in the mean concentration can be estimated from bootstrap techniques, or from27
the 95% LCL and UCL for the mean concentration as described above.28

29
Parametric Probability Distribution for Uncertainty30

31
If multiple sources of uncertainty are propagated in a Monte Carlo analysis (e.g., 1-D MCA for32

uncertainty; or 2-D MCA for variability and uncertainty), then it may be useful to characterize uncertainty33
in the mean concentration with a probability distribution rather than multiple point estimates.  For samples34
that are fit to a normal or lognormal distribution, estimates of the 95% LCL and 95% UCL may provide a35
reasonable measure of the range of uncertainty in the concentration term.  Given this range, and the36
arithmetic mean concentration, a risk assessor may wish to use a triangular distribution to characterize37
uncertainty, as shown in Figure 4-4.  This choice of distributions provides a reasonable screening tool for38
sensitivity analysis.  In addition, based on Maximum Entropy principles (Chapter 3, Section 3.4.6), the39
triangular distribution would be the preferred PDF for maximizing uncertainty given estimates of the40
plausible range and most likely value for the arithmetic mean.  If parameter uncertainty, such as41
uncertainty in the arithmetic mean concentration, is determined to be a major source of uncertainty in the42
risk estimates, additional methods may be explored, including extending the bounds of the uncertainty43
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distribution (e.g., 97% Confidence Interval, given by the 97.5% LCL and UCL), and collecting or1
researching additional data to reduce uncertainty (i.e., Tier 2 of Figure 1-3).2
  3

Probability distributions for variability and uncertainty should not be combined in a 1-D MCA4
simulation.  For example, assume a triangular distribution for uncertainty in mean concentration was5
combined with distributions representing variability in other exposure variables using 1-D MCA.  The6
result would be a single distribution for risk that reflects both uncertainty and variability.  In such a case,7
distinguishing the variability in risk from the uncertainty in the risk estimates would not be possible. 8
EPA’s Guiding Principles for Monte Carlo Analysis recommends against mixing distributions of9
variability and uncertainty in a 1-D MCA (U.S. EPA, 1997b) to avoid such ambiguities.  10

11
12
13
14
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Figure  4-4.  Uncertainty in the concentration term showing hypothetical estimates of the 95%
LCL, sample mean, and 95% UCL.  For the point estimate method, three 1-D MCA simulations
could be run, each simulation using one of the 3 point estimates representing uncertainty.  For a
2-D MCA, a triangular distribution for uncertainty may be fit to the three points.  Note that in this
example, the mode (most likely value) of the triangular distribution is defined by the sample mean
in order to reflect the assumption that this is the best estimate for the long-term exposure point
concentration.
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Nonparametric Probability Distribution for Uncertainty1
2

Parametric and nonparametric bootstrap techniques are relatively straight forward to implement, and3
can be used to characterize the entire probability distribution for uncertainty in the mean concentration4
(see Appendix D).  As with the parametric probability distribution approach described above,5
bootstrapped estimates of the mean are useful when multiple sources of uncertainty are propagated in a6
Monte Carlo model (e.g., uncertainty in concentration, exposure duration, etc.).7

8
4.3.2 SPECIFYING A DISTRIBUTION FOR THE CONCENTRATION TERM WHEN EXPOSURE IS NOT9

RANDOM10
11

For some situations, the assumption of random exposures may be clearly incorrect.  A quantitative12
estimate of variability in the concentration term may be informative.  For example, groundwater13
concentration measurements may show a large variance when sampled from wells in different locations14
(Figure 4-5).  Typically, residential receptors do not sample randomly from different wells, but draw15
chronically from individual wells; the contacted wells in an area may have contaminant concentrations16
that vary with location of the well.  In such a case, the exposure unit is a single wellhead.17

18
A probabilistic analysis of variability may be used to account for temporal variability due to seasonal19

fluctuations in the water table.  Other factors may also influence the fate and transport of the chemicals20
and, hence, the concentration.  The risk assessor should consult extensively with a hydrogeologist to21
obtain an appropriate estimate of the long-term average concentration at a given location.22

23
Temporal variability in the concentration term may be an important component of individual variability24

in exposures, depending on the chemical and the exposure medium.  For example, wind erosion may25
change chemical concentrations in surface soil.  Leaching may change concentrations in both subsurface26
soil and groundwater.  Large predatory fish may have high concentrations of contaminants due to27
bioaccumulation, and may be preferentially selected by an angler for consumption.  Such factors generally28
should be considered early in the risk assessment process and included in the conceptual site model.29

30
Simulations of long-term average intake based on a series of short-term doses may be useful; for31

example, in simulations of groundwater concentrations which fluctuate over time.  The Microexposure32
Event (MEE) approach simulates long-term intake as the sum of individual exposure events and is33
appropriate for this situation (Appendix E).  The time step for MEE is an important consideration and will34
depend on the rate of change of the most rapidly changing exposure variable.  In addition, there should be35
a correspondence between the time periods over which data were obtained and the time step used in the36
MEE model.37

38
39
40
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Figure 4-5.  Spatial and temporal variability in contaminant concentrations in groundwater. 
Fluctuations in the groundwater plume will depend on the hydrogeology of the site as well as
the seasonal fluctuations in the water table.  In this hypothetical example, concentrations are
declining over time at distances nearest to the source, and concentrations are increasing as
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4.3.3 SPECIFYING A DISTRIBUTION FOR THE CONCENTRATION TERM WHEN EXPOSURE IS NOT1
LONG TERM2

3
At times, acute or short-term exposures may be distinguished from chronic exposure scenarios and4

warrant a separate assessment.  Acute exposures can be defined differently for different sites.  It may5
refer to intermittent exposure events over long periods (inhalation exposures from temporary incinerator6
emissions; landscaping), or multiple exposure events over a short period (e.g., construction workers7
renovating a building).  The frequency and duration of the exposure events will be different than that of8
chronic exposure scenarios.  In addition, the exposure unit may represent the specific areas of the site9
that the receptor is expected to contact during the short period.  Contact within this exposure unit is still10
assumed to be random, unless information on time-use and activity patterns suggest that exposures are11
likely to be greater within certain locations of the exposure unit (e.g., hotspots; confined areas).  The12
parameter of interest is still the mean exposure concentration (or 95% UCL).  The use of a distribution13
defining lower and upper confidence limits on the mean concentration within the exposure unit to14
represent uncertainty in the concentration term, as discussed in Section 4.3.1, would still be appropriate. 15
A possible exception might be for acute exposure scenarios in which contaminant levels from a limited16
number of sample points (or even a single sample point) may pose an immediate health risk.  In these17
instances, the use of a point estimate for the concentration term may be more appropriate.  18

19
4.4 EVALUATING THE RISK RANGE AND THE RME RANGE20

21
The results of a PRA will generally yield a probability distribution for risk (or Hazard Index), from22

which the risk corresponding to the CTE and RME can be identified.  In general, a risk manager will23
identify an RME from the high end of the distribution (i.e., the 90th to 99.9th percentiles) for risk (or24
Hazard Index).  As discussed in Chapter 1 (see Section 1.4), for clarity in this guidance, the 90th to 99.9th25
percentiles of the risk distribution are collectively referred to as the recommended RME range. 26
Therefore, in order to utilize PRA results to establish that a cleanup goal is sufficiently protective, two27
questions will generally need to be addressed:28

29
1) How will the RME risk be identified from the RME range of the risk distribution? and30
2) How will information on uncertainty in the high-end risk estimates be utilized in this process?31

32
The NCP (U.S. EPA, 1990) discusses a generally acceptable range for cumulative excess cancer33

risk of 10-6 to 10-4  for protecting human health.  Furthermore, the NCP specifies 10-6 as a point of34
departure for determining remediation goals when ARARs are not available or sufficiently protective. 35
The range, 10-6 to 10-4 , will be referred to as the risk range in this guidance.  If the Hazard Index (HI) is36
greater than 1, there may be a concern for potential non-cancer effects.  Generally, where cumulative37
carcinogenic risk to an RME individual is less than 10-4, and the non-carcinogenic hazard quotient is less38
than or equal to 1, action is not warranted unless there are adverse environmental impacts or ARARs39
(e.g., maximum contaminant levels) are exceeded (U.S. EPA, 1991). 40

41
In point estimate risk assessment, the RME is estimated from the combination of point estimates42

appropriate for the RME.  In PRA, a risk manager chooses a percentile from the RME range to represent43
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the RME.  This section provides guidance on factors to base the choice of RME from within the RME1
range.  Additional discussion is provided in Chapter 5.2

3
4.4.1 RISK ASSESSMENT CONSIDERATIONS4

5
Much like the data quality objectives that are evaluated during sample design and collection, it is6

important to consider the quality of the data that are used in the risk assessment (i.e., qualitative and7
quantitative uncertainties) in order to evaluate the strengths and weaknesses of the assessment (U.S.8
EPA, 1993b).  Communication between risk managers, risk assessors, and other technical team members9
is vital at this stage.  The main question to be answered is, “How well do the inputs to the risk assessment10
represent exposure pathways and behaviors at a given site?”.  The answer to this question can be11
expressed qualitatively (e.g., high, medium, or low) or quantitatively (e.g., 2-D MCA).  For example, are12
the inputs based on the collection of site-specific data or are they based on generic national data?  If13
based on generic data, how closely do they represent the actual exposure factors at a given site?  Also,14
how certain are the toxicity benchmarks (i.e., do they have high, medium, or low confidence, reflecting15
low, medium or high uncertainty)?  The importance of data representativeness in selecting and fitting16
distributions is discussed in Chapter 3 (Section 3.4).17

18
A specific example of potentially poor representativeness would be the use of national data for19

estimating the exposure frequency of adult workers when the receptor of concern is a railroad worker. 20
Such workers may typically be on the site for only 100 days/year.  If the risk assessment were based on21
the national default assumption of 250 days/year, this choice would give a high bias to the risk estimate. 22
When evaluating the representative of a distribution, care should be given to characterizing both current23
and future exposure scenarios.24

25
Another example of a site-specific exposure factor that may vary considerably among different26

locations is fish ingestion rates.  At sites where ingestion of fish contaminated with metals poses a27
concern, tissue concentrations from fish fillets collected on site are often used to determine the28
concentration term.  However, a cultural practice of people harvesting fish on site may include consuming29
some of the internal organs of the fish in addition to the fillets.  If the metal contaminants selectively30
accumulate in the internal organs instead of the fillet tissues, use of data on fillets and omitting data on31
internal organ contaminants would give a low bias to the risk estimate.32

33
This type of evaluation of the data can provide  the risk assessor and risk manager a qualitative34

indication of whether the data used in the risk assessment are likely to over- or underestimate the risk. 35
Such qualitative evaluation is invaluable.  If there is substantial qualitative uncertainty in the risk36
assessment, a prudent course of action for risk managers would generally be to select a percentile toward37
the upper end of the RME range (i.e., 90th to 99.9th percentiles) or to collect additional data when the38
direction of the bias is unknown.39

40
PRA can also provide quantitative information on the confidence associated with a risk estimate,41

which could assist the risk manager in choosing an appropriate percentile in the RME range.  Most site-42
specific PRAs will focus on the variability in exposure parameters in a population to arrive at a distribution43
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EXHIBIT 4-3

EXAMPLES OF 
DEMOGRAPHIC, CULTURAL, AND B EHAVIORAL

FACTORS THAT CAN AFFECT EXPOSURE

C subsistence fishing, hunting, or ingestion of home-
grown produce

C exposures to cultural foods or medicines that contain
contaminants

C preparation of foods in containers that contain
contaminants

C hobbies and other personal practices resulting in
exposure to contaminants

C age of the population (e.g., children may have
greater exposure and susceptibility than adults; U.S.
EPA, 1995a; 1996)

of risks for that population or any given individual in that population.  However, questions may arise1
concerning the confidence or certainty around those risk estimates.  For example, how much confidence2
do we have that enough soil samples were collected to adequately characterize contaminant3
concentrations on site?  A more complex PRA method that separates variability from uncertainty, such as4
a 2-D MCA, could be used to quantify the uncertainty or confidence surrounding the contaminant5
concentration and, subsequently, the final risk estimate (see Figure 4-3 and Appendix E).6

7
4.4.2 SITE-SPECIFIC FACTORS8

9
The demographic and behavioral10

features of a potentially exposed11
population and the physical and 12
geographical factors at a site can increase13
or decrease exposure to contaminated14
media.  Examples of such factors are15
listed in Exhibits 4-3 and 4-4.  These16
factors should be considered in defining17
exposure pathways and characterizing18
exposure variables in the risk assessment. 19
Such site-specific information may20
support a decision to evaluate the entire21
RME range (90th to 99.9th percentile)22
before selecting the percentile that23
represents RME risk.  A departure from24
the 95th percentile would depend on25
whether or not qualitative factors, or26
factors not quantitatively addressed in the27
exposure assessment, suggest an28
increased or decreased exposure, and29
hence, risk.  In practice, multiple and30
sometimes competing factors will need to be balanced in order to determine an appropriate percentile for31
the RME risk (see hypothetical example in Section 4.4.7).  When evaluating such factors, risk assessors32
should account for both current and future land use scenarios.33

34
Subpopulations may be at increased risk from chemical exposures due to increased sensitivity,35

behavior patterns that result in high exposures, and/or current or past exposures from other sources. 36
Environmental health threats to children are a particular concern (U.S. EPA, 1995a, 1996).  Once37
identified, a subgroup can be treated as a population in itself, and characterized in the same way as the38
larger population using similar descriptors for population and individual risk (U.S. EPA, 1995b). 39

40
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EXHIBIT 4-4

EXAMPLES OF PHYSICAL OR GEOGRAPHICAL FACTORS THAT CAN AFFECT EXPOSURE

C geographical features that limit or enhance accessability (e.g., slopes, valleys, mountains)

C land use, including where exposure occurs within the exposure unit, and the current or future
manner in which the receptor contacts contaminated media

C depth of contamination (e.g., surface soil is of greatest concern for direct contact)

C bioavailability of contaminant from media or water (e.g., physicochemical factors that enhance or
reduce absorption)

C availability of contaminated medium for exposure (e.g., chipping or peeling paint surfaces vs.
intact surfaces)

C water quality and distribution systems, including water hardness and use of lead-soldered pipes

C temporary barriers (e.g., fences, ground cover, and concrete) that affect current (but not
necessarily future) exposures

4.4.3 B IOLOGICAL DATA1
2

Biological monitoring data and/or other biomarker data can be useful sources of information for3
evaluating uncertainty in an exposure assessment.  In human health risk assessments, these data can4
provide an indication of the magnitude of current or past exposures and the degree to which the exposures5
are correlated with contaminated media.  Examples of biological data are lead in blood, trichloroethylene6
and its metabolites in blood or urine, arsenic or methyl parathion metabolites in urine, and PCBs or dioxins7
in fat tissue.  Just as air or ground water monitoring data can provide increased (or decreased) confidence8
in the results of predictive air or ground water models, biomarkers can be used in a similar manner to9
evaluate how much confidence should be placed in predictive exposure assessment models.  Biological10
data can be subject to the same shortcomings as other exposure data in terms of data quality and11
representativeness.  The design and performance of the biological data collection effort generally should12
be carefully evaluated for these factors (e.g., low, medium, and high quality or confidence; low or high13
bias, etc.) before using the results in the risk decision. 14

15
16
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EXHIBIT 4-5

EXAMPLES OF TOXICITY CONSIDERATIONS

C How severe is the effect?

C Is the effect reversible?

C How steep is the slope of the dose-
response curve at low dose?

C Is the contaminant persistent in the
environment or in people?

C Dose the contaminant bioconcentrate as
it moves through the food chain?

C How bioavailable is the contaminant?

4.4.4 TOXICITY DATA1
2

A variety of factors will affect the magnitude of adverse responses expected to occur in similarly3
exposed individuals such as age, physiological status, nutritional status, and genotype.  In general, these4
sources of interindividual variability, and related uncertainties, are taken into account in the derivation of5
toxicity values (e.g., RfC, RfD, CSF) used in human health risk assessments.  Thus, human health toxicity6
values usually are derived to be health-protective for the most sensitive portions of the U.S. population.7

8
L Sources of variability or uncertainty are typically accounted for in the derivation of9

toxicity values.  Risk managers generally should consider this in making their decision10
about the appropriate RME risk percentile to use.11

12
Risk managers should carefully consider whether the toxicity value is representative of the population13

of concern (Exhibit 4-5).  Uncertainty in toxicity values may reflect insufficient data to evaluate14
developmental toxicity concerns, in utero exposures, and chemical mixtures.  Also, the population at the15
site may not be adequately represented by the sensitive part of the U.S. population, accounted for in the16
derivation of the toxicity value.  This determination would require coordination with a toxicologist to17
review of the basis for the derivation of the toxicity values in question.  Even then, in most cases, the18
determination will be very difficult, because our understanding of human variability in toxicologic19
responses is very limited.  For example, in the derivation of non-cancer human health toxicity values20
(RfD, RfC), inter-individual variability in21
toxicokinetics and toxicodynamics is usually22
represented with an uncertainty factor because data23
are insufficient to support a more quantitative24
representation of these sources of inter-individual25
variability.  26

27
  At one Superfund site, a distribution of toxicity28
values for methylmercury was used to evaluate29
exposures to women of child-bearing age.  A30
physiologically-based pharmacokinetic (PBPK)31
model with distributions for all the model parameters32
was used to determine a range of mercury levels in33
hair for a single dose rate.  A technique called34
Benchmark Dose Modeling (BMD) was used to35
relate the levels in maternal hair to adverse36
developmental effects, based on data from a37
prospective epidemiology study.  The level of38
methylmercury in maternal hair thought to present no39
developmental risk was estimated with the BMD model and used to determine a range of intakes based40
on the range of physiological parameters in the PBPK model.  This range of intakes yielded a Reference41
Dose for methylmercury expressed as a distribution with a range from 0.0001 to 0.0003 mg/kg-day. 42
While this type of information should not be used to characterize variability in human health risks, it does43
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EXHIBIT 4-6

NINE CRITERIA FOR EVALUATION OF 

CLEANUP ALTERNATIVES (U.S. EPA, 19901)

Threshold Criteria

1. Overall protection of human health and the
environment

2. Compliance with ARARs

Balancing Criteria
3. Long-term effectiveness and permanence
4. Reduction in toxicity, mobility, or volume

through treatment
5. Short-term effectiveness 
6. Implementability
7. Cost

 Modifying Criteria

8. State acceptance

provide additional information on uncertainty that can be compared with other sources of uncertainty in1
the exposure assessment.  Thus, toxicity data can inform qualitative risk management choices regarding2
the percentile representing the RME (within the 90th to 99.9th percentile range) and/or the appropriate3
confidence limit on the RME estimate.4

5
4.4.5 M ULTIPLE CRITERIA FORM THE B ASIS OF THE REMEDIAL DECISION6

7
The considerations discussed above may tend to interact in a consistent pattern.  Consider, for8

example, that a risk manager is presented with a risk assessment for a heavy metal in residential soil in9
which the distribution of risk estimates in the RME range (i.e., 90th to 99.9th percentiles) overlaps the risk10
range of concern (10-6 to 10-4).  The risk manager then proceeds with the site technical team to evaluate11
the data input to the risk assessment, the site-specific factors, and the available biological data.  The risk12
manager learns that the soil collection/analysis effort was well-designed and, hence, has high confidence13
in the results.  However, generic national data were used for the intake and uptake exposure assumptions14
in the risk assessment.  The risk manager also notes that the predominant chemical and physical forms of15
the metal in the soil are characterized by relatively low bioavailability.  In addition, all of the yards in the16
residential neighborhood are covered with grass lawns, a feature generally expected to reduce direct17
exposure to soil.  The risk manager is also aware of biological data regarding human exposures obtained18
by the local health department.  Concentrations of the metal were measured in samples of human tissue19
that are indicative of short term and chronic exposures.  The levels were within normal physiological20
ranges, suggesting little, if any, contaminant21
exposure occurred at the site.22

23
When all of these factors are considered, they24

form a logical picture, which may suggest that the25
results of the risk assessment are biased towards an26
overestimate of risk.  These results, together with27
the nine criteria for remedy selection given by the28
NCP (U.S. EPA, 1990) (Exhibit 4-6), may form the29
basis for selecting a cleanup level.  A sensitivity30
analysis should be performed (see Chapter 2) to31
determine whether the information is relevant for32
the exposure variables that contribute most to the33
variability or uncertainty in risk.  For example, if34
absorption fraction contributes little to the variance35
in a risk estimate, then site-specific data on36
bioavailability would be less important than37
information on other variables.  Site-specific38
information can provide greater confidence that a39
probabilistic risk estimate in the lower end of the40
RME range (i.e., 90th to 99.9th percentile) is41
appropriate and health protective.42

43
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4.4.6 EXAMPLE OF RISK ESTIMATES FROM B OTH POINT ESTIMATE AND PRA M ETHODOLOGIES1
2

The following example, based to large extent on Smith (1994), illustrates the application of point3
estimate and probabilistic approaches to risk assessment.  It is a “bare-bones” example, providing the4
minimum information that should be presented to a risk manager.  5

6
Two chemicals of concern have been identified in groundwater with a point estimate risk assessment:7

1,1-dichloroethene and 1,1,2-trichloroethane.  The single exposure pathway considered is tap water8
ingestion.  Carcinogenic risks are summed for all contaminants.  Table 4-2 summarizes the point estimate9
and PRA inputs used to estimate variability in lifetime cancer risks for a residential adult population10
exposed to volatile organic chemicals that have migrated into a residential well.  Water samples were11
obtained from the same well at different points in time over a period of one year.  These data characterize12
temporal variability in the concentrations, which happen to fit a lognormal distribution very well.  While13
one may be tempted to use the lognormal distribution in the 1-D MCA for variability, care should be taken14
to recognize that the EPC still represents the long-term average concentration.  The appropriate metric in15
this case is the arithmetic mean (or uncertainty in the mean represented by the 95% UCL).  Table 4-316
summarizes hypothetical concentration data measured in residential wells.  Estimates of the true long-term17
contaminant concentrations for both CTE and RME individuals are based on the 95% upper confidence18
limits for the true mean concentration (U.S. EPA, 1992).19

20
The CTE and RME risk from the point estimate approach were calculated using EPA’s default21

exposure assumptions for adults (U.S. EPA, 1993).  The PRA risk estimates reflect interindividual22
variability in exposure.  For this example, uncertainty is characterized only by the use of 95% UCL for the23
mean concentration.  For simplicity, correlations between contaminant concentrations, temporal patterns24
in concentrations, and inhalation exposure during showering were not incorporated into the exposure25
model.  (Generally, a comprehensive PRA would evaluate inhalation exposure due to showering for26
volatile chemicals in groundwater.)  The probability distributions used for other exposure variables reflect27
a combination of lognormal and triangular distributions.  Parameter values are based on values given in28
the Exposure Factors Handbook (U.S. EPA, 1997c).  The citations to the primary literature are also29
provided in Table 4-3. Hypothetical truncation limits were applied to the exposure duration (maximum =30
30 years) and the adult body weight (minimum of 25 kg, maximum of 180 kg) to explore this source of31
uncertainty.  These parameter estimates are hypothetical, and constrain the random sampling of the32
Monte Carlo simulation to plausible bounds (see Chapter 3).33

34
Figure 4-6 shows a risk distribution estimated from a Monte Carlo simulation using 10,000 iterations35

along with values corresponding to selected percentiles.  Both the RME risk from the PRA (determined to36
be the 95th percentile of the risk distribution for this site) and the RME from the point estimate approach37
exceed a target risk of 1x10-5.  The risk level of concern for this example corresponds with approximately38
the 90th percentile (i.e., there is a 10 percent probability that risk exceeds 1x10-5).  The RME range (90th39
to 99.9th percentiles) spans nearly one order of magnitude.  At this point, a sensitivity analysis would be40
conducted to identify which exposure variables contribute most to the variability in risk.  This information41
may lead to additional probabilistic analysis and/or data collection in order to quantify and reduce sources42
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of uncertainty in the risk estimates within the RME range.  In practice, a sensitivity analysis would be1
conducted both before and after performing the 1-D MCA.2

3
As stated in Chapter 1, in PRA, a recommended starting point for risk management decisions4

regarding the RME is the 95th percentile of the risk distribution.  The intent of this descriptor is to convey5
an estimate of risk in the upper end of the risk distribution, while providing a risk manager with some6
flexibility to select a different (higher or lower) percentile depending on site-specific information regarding7
exposure and toxicity.  Results of the PRA from this example suggest that remedial action may be8
warranted to reduce risks at the site.  The example presented in Section 4.4.7 provides additional9
guidance on selecting an appropriate percentile from the RME range.10

11
4.4.7 EXAMPLE OF SELECTING AN RME RISK FROM THE RME RANGE12

13
The following example of a hypothetical risk assessment illustrates the type of information that may14

be considered in determining an appropriate percentile of the RME range (i.e., 90th to 99.9th percentiles)15
to represent the RME for remedial decisions.16

17
4.4.7.1 B ACKGROUND18

19
Site XYZ is a wood treatment industrial facility that has been in operation for twenty years.  The20

owner plans to replace the existing facility with an industrial complex.  As part of a recent RI/FS, PAHs21
from creosote contamination were identified in surface soil.  The likely future receptor at the site is an22
occupational worker (e.g., operator/mover performing light industry, warehousing, or industrial park types23
of activities).  Risk managers selected a cancer risk of 1x10-5 as a level of concern for the site.24

25
4.4.7.2 RISK ASSESSMENT ASSUMPTIONS26

27
The single chemical of concern was benzo(a)pyrene equivalents, representing carcinogenic PAHs. 28

The exposure scenario is an adult worker who is exposed via soil ingestion.  As part of the screening level29
assessment (Tier 1 of Figure 1-4), point estimates of CTE and RME risk were calculated as 4.0x10-6 and30
8.0x10-5, based on pilot data for concentrations in soil and default exposure factors.  A preliminary31
sensitivity analysis demonstrated that the risk estimates are most sensitive to the following two exposure32
variables – concentration in soil and exposure duration. 33

34
35
36
37
38
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Symbol Description Units CTE RME Type Parameters Source

Cw concentration in water µg/L 95% UCL 95% UCL 95% UCL see Table 4-2 hypothetical site data

IRw tap water ingestion rate,
adults ages 20 - 65 yrs

mL/day 1400 2000 lognormal
1 (7.023, 0.489) EFH (U.S. EPA, 1997a); 

Roseberry & Burmaster, 1992

EF exposure frequency days/yr 234 350 triangular
3

(180, 250, 350) judgment

ED
exposure duration

yrs 9 30
truncated

lognormal
2 (4.2, 5.0, 0, 30)

site-specific survey

BW
body weight, adults

kg 70 70
truncated

lognormal
2 (71, 15.9, 30, 150)

Brainard & Burmaster, 1992

AT averaging time days 25550 25550 constant 25550 RAGS (U.S. EPA, 1989)

CSF oral cancer slope factor (mg/kg-day)
-1 IRIS, June 1998

1
 Parameters of lognormal PDF are X ~ exp[Normal{AM of ln(X), SD of ln(X)}].

2
 Parameters of lognormal PDF are X ~ Log(AM of X, SD of X, min, max)

3
 Parameters of triangular PDF are X ~ Triang{min, best estimate, max}.

Input Variable

1,1 - Dichloroethene = 6.00E-01
1,1,2 - Trichloroethane = 5.72E-02

Point Estimate Probability Distributions and Point Estimates

Contaminant

AM SD 95% UCL

1,1-Dichloroethene 1.0 1.8 2.2

1,1,2-Trichloroethane 1.2 2.2 2.5

Cw (µg/L)1

1
2

3
4
5
6
7
8

9
10
11
12
13
14

Table 4-2.  Inputs for Drinking Water Exposure Scenario

Table 4-3.  Concentration Data for Chemicals of Concern

1Concentrations were fit to a lognormal distribution; 95% UCL was calculated
using the Land method (U.S. EPA, 1992).
AM = arithmetic mean
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Figure 4-6.  1-D Monte Carlo simulation results (n = 10,000 iterations) showing the PDF (top
panel) and CDF (bottom panel) for the distribution of risk based on a hypothetical exposure
scenario.  Important summary information is presented for both the point estimate approach
(CTE and RME) and the PRA.  The risk criterion, selected as 1x10-5, falls at the low end of
the RME range (90th to 99.9th percentiles).
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4.4.7.3 PROBABILISTIC RISK ASSESSMENT1
2

The site owner expressed a wish to perform a PRA.  A scoping meeting was held with the EPA3
remedial project manager and branch chief, regional risk assessors, the site owner and his consultant,4
state regulators, and representatives from two local community groups.  The stakeholders agreed that the5
data in hand was insufficient to support a PRA and recommended collecting additional soil samples and6
site-specific estimates of job tenure.  The stakeholders also decided that a 1-D MCA of variability in risk7
would provide useful information for the remedial decision.8

9
Soil samples were analyzed with an immunological analysis for PAHs that could be performed onsite. 10

Twenty percent of the immunological results were confirmed with a CLP methods.  A regression11
equation that related B(a)P equivalents to the immunologic results was developed based on the 20% of12
the soil samples that were jointly analyzed.  Use of the immunologic analysis provided a cost-effective13
way to obtain many more soil measurements.14

15
All workers at the plant completed a confidential questionnaire regarding the length of time each had16

worked at Site XYZ and how long each planned to remain employed there.  The median job tenure at Site17
XYZ was 1.8 years, considerably less than the 6.6 year18
national average.19

20
For this scenario, assume the results of a sensitivity21

analysis suggested that the high-end risk estimates are greatly22
affected by the variability in exposure duration (i.e., job23
tenure).  An RME point estimate of 5.0 x10-5 was developed24
using the 95th percentile value of the job tenure distribution as25
the exposure duration and the 95% UCL based on all the soil26
sampling.  A PRA using 1-D MCA was performed using the27
site-specific empirical distribution of job tenure and the 95%28
UCL as a point estimate for concentration.  Table 4-429
summarizes the risk estimates from a Monte Carlo simulation with 10,000 iterations.  30

31
4.4.7.4 RME RISK FROM THE RME RANGE32

33
When determining cleanup levels that are protective of the RME individual, the remedial project34

manager’s task is to select a percentile from the RME range of 90 to 99.9 that represents the RME risk35
estimate.  This guidance recommends  the 95th percentile as a reasonable starting point.  As discussed in36
Sections 1.4 and 4.4.1, the selection of a different percentile will require judgment regarding the quantity37
and quality of site-specific information.  Factors that tend to mitigate risk  may support the choice of a38
lower percentile in the RME range.  Factors that may tend to exacerbate risk support the choice of39
moving to higher than the 95th percentile.  Uncertainties that cannot be adequately quantified by the40
chosen modeling approach may also support the selection of a higher percentile value to estimate the41
RME.  In practice, a risk manager must balance multiple, competing factors. 42

43

Table 4-4.  Selected risk estimates from 1-D
MCA simulation.

          Percentile                          Risk (x 10-5)
90.0 2.1
92.0 2.4
95.0 2.9
 97.0  3.5
99.0 5.1
99.9 9.8
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At Site XYZ, the remedial project manager considered four factors:1
2

Factors that mitigate risk or reduce uncertainty 3
4

1) Variability in exposure duration was characterized from reliable site-specific data.  Job tenure at Site5
XYZ was considerably lower than initially thought.  Since this was the most sensitive variable in the6
model, the remedial project manager has confidence in the high-end risk estimates. 7

8
Factors that increase uncertainty in the risk distribution9

10
2) Industrial activities would involve periodic movement of heavy machinery within exposed (bare) soil11

areas.  Without knowing the patterns of moving equipment, it is reasonable to assume that individuals12
exposed more often to bare soil areas experience higher soil ingestion rates, and potentially different13
exposure point concentrations.  Thus, some individuals may be highly exposed.14

15
3) A regression equation used to relate B(a)P equivalents to cPAHs constituted a source of parameter16

uncertainty in the concentration term that was not reflected by the use of the 95% UCL.17
18

4) Adult soil ingestion was characterized by a point estimate rather than a probability distribution, which19
limited the information that could be obtained from the sensitivity analysis following the 1-D MCA. 20
Qualitative information regarding activity patterns of adult workers suggested that contact-intensive21
activities may yield higher ingestion rates than represented by even the RME point estimate.22

23
Based on these considerations, the remedial project manager decided to select the 97th percentile for the24

RME.  The reliable site-specific information on exposure duration was offset by the sources of uncertainty25
that were not easily quantified in the exposure model.  26

27
Uncertainty in the three factors discussed above was addressed qualitatively in both the PRA and point28

estimate approaches.  Selection of the 97th percentile, rather than the 95th percentile, did not change the result29
of the risk assessment – the risk estimate at both these percentiles exceeded 1x10-5.  However, the decision30
to select a percentile toward the upper end of the RME range does have implications for determining the31
appropriate PRG.  The selection of a PRG based on the assumptions in this example is discussed further in32
Chapter 7.33

34
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CHAPTER 51

USING PROBABILISTIC ANALYSIS IN ECOLOGICAL RISK ASSESSMENT2
3

5.0 INTRODUCTION 4
5

Basic Approach for Performing Ecological Risk Assessments6
7

Ecological risk assessment is a key component of the Remedial Investigation process that EPA uses8
at many Superfund sites.  EPA has developed extensive guidance and policies on methods and9
approaches for performing ecological risk assessments, including the following:10

11
1. Ecological Risk Assessment Guidance for Superfund: Process for Designing and12

Conducting Ecological Risk Assessments – Interim Final (“ERAGS”), (U.S. EPA, 1997a). 13
This document includes processes and steps specifically selected for use in ecological risk14
assessments at Superfund sites.  This document supersedes the 1989 EPA RAGS, Vol. 2,15
Environmental Evaluation Manual.  Supplements to RAGS Vol. 2 and ERAGS include the16
EcoUpdates (U.S. EPA, OSWER, Intermittent Bulletin Series, 1991 to 1994), which provide17
brief recommendations on common issues for Superfund ecological risk assessments.18

19
2. Ecological Risk Assessment and Risk Management Principles for Superfund Sites (U.S.20

EPA, 1999).  This document supplements ERAGS (U.S. EPA, 1997a) and provides additional21
guidance for both risk assessment and risk management.22

23
3. Guidelines for Ecological Risk Assessment ("Guidelines") (U.S. EPA, 1998a).  This document24

updates general (non-program specific) guidance that expands upon and replaces the earlier25
Framework for Ecological Risk Assessment (U.S. EPA, 1992a). 26

27
4. Risk Assessment Guidance for Superfund (RAGS):  Volume 1- Human Health Evaluation28

Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk29
Assessments, Interim Final), (U.S. EPA, 1998b).  This guidance specifies formats that are30
recommended to present data and results in baseline risk assessments (both human and31
ecological) at Superfund sites.32

33
5. Policy Memorandum: Guidance on Risk Characterization for Risk Managers and Risk34

Assessors, F. Henry Habicht, Deputy Administrator, Feb. 26, 1992 (U.S. EPA, 1992b).  This35
policy recommends baseline risk assessments to present ranges of risks based on “central36
tendency” and “reasonable maximum” (RME) or “high end” exposures with corresponding risk37
estimates.38

39
6. Policy Memorandum:  Role of the Ecological Risk Assessment in the Baseline Risk40

Assessment from Elliott Laws, Assistant Administrator, August 12, 1994, OSWER Directive No.41
9285.7-17 (U.S. EPA, 1994).  This policy recommends the same high level of effort and quality42
for ecological risk assessments as commonly performed for human health risk assessments.43
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1
7. Policy Memorandum:  EPA Risk Characterization Program from Carol Browner,2

Administrator, March 21, 1995 (U.S. EPA, 1995a).  This policy clarifies the presentation of3
hazards and uncertainty in human and ecological risk assessments, calling for clarity,4
transparency, reasonableness, and consistency.5
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EXHIBIT 5-1  

DEFINITIONS FOR CHAPTER 5

Assessment endpoint -  An explicit expression of the environmental feature that is to be protected, operationally defined for
risk assessment as valuable attributes of an ecological entity.

Community - An assemblage of populations of different species specified by locales in space and time.

Conceptual model - A site conceptual model (SCM) in the problem formulation for an ecological risk assessment is a written
description and visual representation of predicted relationships between ecological entities and the stressors to
which they may be exposed, including sources and pathways of stressors.

Ecological risk assessment (ERA) - The process that evaluates the likelihood that adverse ecological effects may occur or are
occurring as a result of exposure to one or more stressors.

Lines of evidence - Information derived from different sources or techniques that can be used to characterize the level of risk
posed to exposed receptors; weight of evidence generally refers to the quantity of science, while strength of
evidence generally refers to the quality of science.

Lowest observed-adverse-effect-level (LOAEL) - The lowest level of a stressor evaluated in a test (when administered to an

ecological receptor) that causes biological and/or statistically significant differences in responses (adverse effects)
from the controls.

Measurement endpoint - A measurable ecological property that is related to the valued characteristic chosen as the
assessment endpoint.  Measurement endpoints often are expressed as the statistical or numeric summaries of the
observations that make up the measurement.

No observed adverse effect level (NOAEL) - The highest level of a stressor administered to an ecological receptor in a test
that does not cause biological and/or statistically significant differences in responses (adverse effects) from controls.

Population - An aggregate of individuals of a species within a specified location in space and time.

Receptor - The ecological entity (with various levels of organization) exposed to the stressor.

Risk characterization (ecological) - The third and last phase of ERA that integrates the analyses of exposure to stressors with
associated ecological effects to evaluate likelihoods of adverse ecological effects.  The ecological relevance of the
adverse effects is discussed, including consideration of the types, severity,  and magnitudes of the effects, their
spatial and temporal patterns, and the likelihood of recovery.

Scientific/Management Decision Point (SMDP) -  A time during the ERA when a risk assessor communicates results or plans
at that stage to a risk manager.  The risk manager decides if information is sufficient to proceed with risk
management strategies or whether more information is needed to characterize risk.

Species - A group of organisms that actually or potentially interbreed and are reproductively isolated from similar groups;
also, a taxonomic grouping of morphologically similar individuals.

Stressor - Any chemical, physical, or biological entity that can induce an adverse response in an ecological receptor;
Superfund focuses on chemical (toxicant) stressors.

Toxicity Reference Value (TRV) - A risk-based dose or concentration that usually includes factors of toxic uncertainties and

is often based on a NOAEL or LOAEL; a TRV is sometimes referred to as a “toxicity benchmark”, but this is not
the same as the conventional “benchmark dose”,  which is the lower probability bound on a dose for a designated
low response.

1
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Ecological risk assessment (ERA) is defined by the 1998 EPA Guidelines as an evaluation of the1
“likelihood that adverse ecological effects may occur or are occurring as a result of exposure to more2
stressors” (U.S. EPA, 1998a).  Figure 5-1 summarizes the 3-phase paradigm for performing an ecological3
risk assessment as recommended by the Guidelines.  The three phases include problem formulation,4
analysis of exposure and effects, and risk characterization; these phases generally follow the four steps of5
the paradigm for risk assessment and management that were described and refined by the National6
Academy of Sciences (NAS, 1983; 1994).7

8
• Problem Formulation (Phase 1) provides a foundation for the entire risk assessment and includes9

the development of a site conceptual model with exposure pathways, the specification of risk10
management goals, the selection of assessment endpoints, and the development of a sampling and11
analysis plan to collect data on measurement endpoints that are needed to support the ecological risk12
assessment.  In general, problem formulation is an iterative process, and  substantial re-evaluation13
may occur as new information and data are collected during the site investigation evaluation. 14
Collection of data in subsequent iterations is often triggered by identification of large uncertainties in15
the risk characterization that prohibit confident risk management decision making.  16

17
• Analysis (Phase 2) includes two principal steps: characterization of exposure and characterization of18

ecological effects.  Exposure characterization describes sources of stressors, their distribution in the19
environment, and their contact or co-occurrence with ecological receptors.  Ecological effects20
characterization evaluates stressor-response relationships or evidence that exposure to stressors21
causes, or has the potential to cause, an observed response.  This potential for effect is usually22
summarized in a Toxicity Reference Value (TRV) that describes some measure of exposure or dose23
that is or is not associated with the occurrence of an adverse ecological effect.  The exposure24
characterization and the ecological effects characterization are then combined in the risk25
characterization. 26

27
• Risk Characterization (Phase 3) estimates the nature and severity of ecological risks attributable to28

exposure to stressors at a site, and interprets the relevance of the adversity of ecological effects. 29
Policies by EPA recommend that a range of risks be presented (U.S. EPA, 1992b), that certain30
formats for results be employed (U.S. EPA, 1997a, 1998b), and that ERAs impart clarity,31
transparency, reasonableness, and consistency (U.S. EPA, 1995a).  Good risk characterizations will32
express results clearly, articulate major assumptions and uncertainties, identify reasonable alternative33
interpretations, and separate the scientific conclusions from policy judgments (U.S. EPA, 1998a).  In34
addition, risk characterizations generally should be as quantitative as possible, identify acceptably safe35
exposure levels to stressors (i.e., PRGs), and identify major data gaps that might require subsequent36
iterations of data collection or analysis.37

38
Specific guidance for completion of ecological risk assessments within the Superfund Program is39

provided in the Ecological Risk Assessment Guidance for Superfund: Process for Designing and40
Conducting Ecological Risk Assessments (ERAGS) (U.S. EPA, 1997a), supplemented by Ecological41
Risk Assessment and Risk Management Principles for Superfund Sites (U.S. EPA, 1999).  In42
Superfund risk assessment, the focus is always on chemical stressors that have been released into the43
environment.  The ERAGS document describes an eight-step process for completing an ecological risk44
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assessment for Superfund, as shown in Figure 5-2.  Although separated into somewhat different1
organizational steps, this process is generally similar to, and consistent with, the approach described in the2
1998 EPA Guidelines.3
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Figure 5-1.  The general framework for ecological risk assessment recommended by U.S. EPA 1998.1
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Figure 5-2.  The eight-step ecological risk assessment process recommended for evaluation of1
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Focus of this Chapter1
2

This chapter focuses on the use of probabilistic risk assessment (PRA) for evaluation of ecological3
exposures and risks at Superfund sites.  The basic mathematical methods and approaches used in4
performing a PRA for a human health risk assessment and an ecological risk assessment are essentially5
the same.  It is assumed that readers of this chapter are already familiar with the basic concepts and6
principles of ecological risk assessment, as detailed in the Agency guidance and policy documents cited7
above, and with the basic principles of PRA that are described in other chapters of this document.8

9
L The basic mathematical principles and techniques of PRA are generally the same for10

ecological and human health risk assessment.11
12

The four main topics covered in this chapter are summarized below:13
14

C Section 5.1: understanding the basics of PRA in ecological risk assessment, with attention to key15
differences between the use of PRA in human and ecological risk assessments;16

17
C Section 5.2: using a decision process for determining if and when to use a PRA in ERAs;18

19
C Section 5.3: developing presentations of ecological risk estimates from PRA for decision making,20

and communicating ecological PRA results with risk managers and the public; and 21
22

C Section 5.4: general guidelines for submitting a PRA as part of an ERA.23
24

5.1 PRA IN ECOLOGICAL RISK ASSESSMENT25
26

A flow chart that illustrates how the PRA process may be incorporated into an ecological risk27
assessment is shown in Figure 5-3.  This figure is similar in content and concept to that shown previously28
for human health risk assessment (see Figure 1-4).  As seen in Figure 5-3, performance of a PRA should29
not normally be considered until the screening ERA and an initial iteration of a point estimate risk analysis30
are both complete, and when the results of these analyses indicate that performance of a PRA will likely31
provide additional useful information to the risk manager.  If a PRA is judged to be of potential use to the32
risk manager, three alternative (and not mutually exclusive) types of PRAs may be considered, as follows:33

34
1. Variability between individuals in a population with regard to the level of exposure (dose), toxicity,35

and/or risk (1-dimensional MCA (1-D MCA) of variability).  This option, which is frequently used36
in human health risk assessment, is also valuable in many ecological risk assessments, especially37
where there may be risks to threatened or endangered species (where risks to individuals are38
more important), and when the assessment of population risk requires knowledge of the39
frequency or severity of risks to different individuals within the population.40

41
2. Uncertainty in the central tendency (average) level of exposure (dose), toxicity, and/or risk (1-D42

MCA of uncertainty) to a population or community of receptors.  This option is useful in cases43
when risks to an average receptor (rather than an RME receptor) are judged to be most relevant44
to risk management decision making.  Uncertainty around the mean (CTE) estimate of exposure45
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or risk can be characterized using one-dimensional modeling, while uncertainty around other1
statistics of the variability distribution generally requires 2-dimensional modeling (see below).2

3
3. Variability and uncertainty in the exposure (dose), toxicity, and/or risk (2-dimensional MCA (2-D4

MCA) of both variability and uncertainty)5
to a population or community of6
receptors.  This option is used for human7
health risk to estimate the best estimate8
and the uncertainty range around the9
RME, and the same approach can help10
describe the full range of risks (including11
both CTE and RME) and the associated12
uncertainty for ecological receptors.13

14
Several important technical and tactical15
differences between human health and ecological16
risk assessments that may influence how PRA is17
used in ecological assessments are noted in18
Exhibit 5-2 and are discussed below.19

20
5.1.1 DATA NEEDS AND AVAILABILITY FOR VARIABILITY ANALYSIS21

22
Due to their complexity, ecological risk assessments are often more demanding of time and resources 23

than are human health risk assessments.  This  complexity can occur at many different levels of the24
analysis.  For example, ecological risk assessments often evaluate multiple receptors, require complex25
food web measurements or modeling, require sophisticated methods for defining exposure units and26
deriving exposure point concentrations, and account for complex behaviors of some species.27

28
An example of a food-web that is part of a site conceptual model illustrating this complexity is shown29

in Figure 5-4.  Focusing on vertebrate omnivores, this example shows that eight different food-web30
pathways potentially contribute to the exposure of receptors in this class.  In addition, exposure of these31
receptors to site chemicals may also occur from ingestion of water, soil, and/or sediment (not shown). 32
Assuming that at least two variables are needed to quantify exposure by each pathway, and that some33
pathways (e.g., food-web pathways) may require 3-5 variables, it is clear that complete point estimate34
evaluation of this class of receptors may include numeric values for as many as 25-50 variables.  In order35
to perform a comprehensive PRA, assuming that each variable is described by at least two parameters to36
define its PDF, a total in excess of 50-100 parameters may be needed.  A similar effort would also be37
expected in order to evaluate each of the other groups of receptors selected for quantitative evaluation. 38

39

EXHIBIT 5-2  

DIFFERENCES IN PRA APPLIED TO

ECOLOGICAL AND HUMAN HEALTH RISK

ASSESSMENT

• data needs and data availability
• endpoints
• toxicity evaluation
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Figure 5-3.  Potential applications of probabilistic risk assessment in ecological assessments.1
2



Figure 5-4.  Example of a portion of a site conceptual model (SCM) that shows pathways of food-web exposure for ecological receptors in an1
estuarine habitat.2

3
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One of the challenges in characterizing variability  in ecological risk assessments is the disparity1
between data needs and data sources.  For example, while EPA does provide a summary of wildlife2
exposure factors (U.S. EPA, 1993a), there are no standard default exposure factors for ERAs analogous3
to those that have been developed by EPA for human risk assessments.  Furthermore, while a number of4
distributions useful for evaluation of human exposures have been published in the literature, there are very5
few published estimates of distributions available for use in ERA at this time.  Thus, the effort to derive6
PDFs (either from published data or by performing site-specific field studies) for all variables can be7
substantial and potentially prohibitive.  In general, the costs and benefits of performing an ecological PRA8
should be carefully evaluated before beginning a PRA (see Section 5.2).9

10
Fortunately, the list of variables and parameters that may be important sources of variability or11

uncertainty in an ecological PRA can usually be reduced by screening the exposure pathways in the site12
conceptual model in order to identify the “risk drivers”.  As discussed in Chapter 2, a sensitivity analysis13
can be used to identify the subset of exposure pathways and exposure media that dominate the risks to a14
population of ecological receptors.  To a lesser extent, variables and parameters that contribute greatly to15
variability or uncertainty in the exposure and risk model may be characterized using the point estimate16
approach.  Variables and parameters that contribute minimally to the output distribution should generally17
be described by point estimates.  Because sensitivity analysis can help to focus a PRA on the sources of18
variability and uncertainty that may affect a risk management decision, it is an important initial step in the19
tiered process described above.  In general, the greatest effort should be devoted to deriving PDFs for20
those key variables or key uncertain parameters that contribute most to the variability and/or uncertainty21
in risk.22

23
5.1.2 ENDPOINTS24

25
According to EPA policy (U.S. EPA, 1992b), both human and ecological risk assessments should26

present variability in risks, generally by describing the range of risks that apply to different parts of the27
variability distribution, including both the  CTE and “upper end” RME (see Exhibit 5-3).  For risks to28
human health, risk management decision-making normally focuses on the RME individual who is at the29
upper end of the inter-individual distribution of exposures and risk.  In general, the risk management30
objective is to ensure that risks to the RME individual do not exceed some specified level of protection.  In31
contrast, many ecological risk assessments focus on local population sustainability and community32
integrity.  Because of this general difference in the risk management objective, ecological risks to a33
population are sometimes evaluated by assessing the risks to an average (rather than an RME) individual34
in the population.35

36
The significance of this difference is that, if risk to a population is to be assessed by evaluation of the37

CTE receptor, it is not always necessary to use PRA techniques to characterize the full range of inter-38
individual variability in exposure and risk.  Rather, it may be more helpful to use PRA techniques to39
characterize the  uncertainty in the estimate of average or central tendency (see Option 2 in Figure 5-3). 40
In this special case, uncertainty can be characterized using 1-D MCA rather than 2-D MCA.  This type41
of uncertainty analysis can be especially helpful for presenting ranges of risks to managers, since it42
provides a much clearer picture of the confidence associated with a particular point estimate of risk. 43
Quantitative estimates of uncertainty can provide risk managers with greater latitude in selecting44
appropriate remedies to protect the health (in terms of the sustainability and integrity) of ecological 45
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1
2 EXHIBIT 5-3

RISK DESCRIPTORS

As described in Chapter 1, the EPA Superfund program generally focuses on two
types or risk descriptors: high-end risks and central tendency risks.

High-end Risk Estimate

“The high end risk descriptor is a plausible estimate of the individual risk for those
persons at the upper end of the risk distribution.  The intent of this descriptor is to
convey an estimate of risk in the upper range of the distribution, but to avoid
estimates, which are beyond the true distribution” (U.S. EPA, 1992b).  This term
conveys the upper range of the distribution (e.g., above the 90th percentile of the
risk distribution) (U.S. EPA, 1992b, 1995a).

High-end risk is typically based on an estimate of the reasonable maximum
exposure (RME), defined as the highest individual exposure that is reasonably
expected to occur at a site over time (U.S. EPA, 1989a, 1989b, 1990, 1992a).

Discussions on high-end risk descriptors in other chapters within this document
focus on describing the “RME” individual.  This term should be interpreted as the
more general “high-end risk” for purposes of ecological risk assessment.  The
endpoint of concern for ecological risk assessment is typically local population-level
effects (e.g., population sustainability and community integrity), rather than
individual-level effects (EPA, 1998a).

Central Tendency Risk Estimate

By contrast, the central tendency risk descriptor represents a central level of risk,
referred to as “average” or “typical” risk.  Likewise, central tendency risk is based
on the central tendency exposure (CTE).

Presented together, the high-end and central tendency risks provide a measure of
both the magnitude as well as the expected variability in risks among the exposed
population.  High-end risk descriptors (e.g., RME) are typically most relevant when
the risk management objective is the protection of human health at the individual
level.  Central tendency risk descriptors may be more relevant for ecological risk
assessments that focus on population-level risks.



RAGS Vol. 3A ~ Process For Conducting Probabilistic Risk Assessment ~  DRAFT DO NOT CITE OR QUOTE

chap5_1299.ts.wpd December 30, 1999

Page 5-14

populations.  In addition, a 1-D MCA for uncertainty can help indicate whether additional tiers of sampling1
may reduce uncertainties in risk estimates.2

3
When the risk to a receptor (either at the individual level or the population level) cannot be properly4

characterized by consideration of CTE risks alone, then 2-D MCA may be needed to simulate both the5
inter-individual variability distribution and to characterize the uncertainty in that distribution (see Option 36

in Figure 5-3).  For example, 2-D MCA is generally needed to quantify uncertainty in RME risk estimates7
at the upper tail of the risk distribution, especially if the receptor is a federal or state-listed threatened or8
endangered species.9

5.1.3 TOXICITY EVALUATION10
11

The toxicity reference value (TRV) that is used in ecological risk assessments is similar in concept to12
the Reference Dose (RfD) used in human health risk assessments.  Generally, an ecological TRV is13
based on a non-lethal, population-relevant, adverse effect.  That is, mild, reversible changes are usually14
not selected as the basis of the TRV because the occurrence of this type of effect is not usually a good15
predictor of ecologically significant individual or population-level adverse effects.  Conversely, selection of16
overly severe adverse effects (including acute or chronic lethality) is generally not appropriate, since a17
TRV based on such a severe effect may not protect organisms from the occurrence of less severe (but18
still significant) adverse effects.  This concept is illustrated in Figure 5-5 (upper panel).19

20
In ecological risk assessment, a TRV is often presented as a range of two values that are based on21

the experimentally observed NOAEL and the LOAEL for a particular endpoint.  Alternatively, TRVs22
may be derived by Benchmark Dose (BMD) modeling (U.S. EPA, 1995b), which uses available dose-23
response data to estimate the dose which produces a 10% effect (ED10), and the lower 95% confidence24
bound on the ED10 (the LED10).  The LED10 is often used as the BMD.  Figure 5-5 (bottom panel)25

 EXHIBIT 5-4

EXAMPLES OF OUTPUT FROM PRA

• distribution of risk among individuals in an exposed population

• probability of a response occurring either in an individual or in a population

• uncertainty in a point estimate of risk

• uncertainty in the site conceptual exposure model

• primary sources of variability and/or uncertainty (sensitivity analysis)

• probability that exposure exceeds a specific benchmark dose or concentration

• association(s) between site media concentrations and the probability of an adverse effect
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illustrates the different approaches for estimating one or more TRVs from a hypothetical dose-response1
data set.2

3
4
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Choosing which data set to employ in deriving a TRV is often difficult.  Figure 5-6 illustrates a case1
where multiple studies were performed on the toxicity of 1,2,7,8-TCDD to kestrel eggs.  As shown in this2
example, typically there is significant variation in effect-levels between different studies.  A careful3
evaluation of the relative strengths and limitations of each study can generally help to identify the4
strongest “key studies” that most appropriately support the derivation of a TRV.  5

6
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1

FIGURE 5-6.  SELECTION OF TRVS FOR ECOLOGICAL RISK ASSESSMENT

From a toxicological perspective, TRVs (NOAELs, LOAELs, EDx) generally should be extrapolated
from toxicological studies that have the least uncertainty and most applicability with regard to: species
tested, duration of chronic exposure, severity of endpoint, and other scientific factors related to good
experimental design and conduct.  Sometimes it is difficult to identify a “clearly best” toxicity dose-
response study and results from which to derive valid TRVs.  Uncertainty analysis can be used to sample
from the better candidate study endpoints.  The following is an example of the presentation of
extrapolated dose-response values from individual study NOAELs and LOAELs to derive distributions for
uncertainty in TRV.  

In this example, chronic TRVs were derived from a variety of literature studies that reported NOAELs
and LOAELs from dioxin-like exposures in American kestrels.  The varied, but normalized, results for the
TRV-loaels (lowest circles) are presented together to illustrate that these values can be used to create an
uncertainty distribution with upper and lower bounds surrounding a most-likely value (mode); e.g., a
triangular function with 70 ppt being the most likely value with bounds of about 6 to 1200 ppt.
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In ecological risk assessments, any specific TRV (NOAEL, LOAEL, BMD, etc) may be1
characterized by a probability distribution that defines either variability (e.g., inter-individual variability in2
toxicity) or uncertainty (e.g., uncertainty in the best point estimate of the mean TRV).  By contrast,3
current EPA policy for human health PRAs is generally to characterize the RfD by a point estimate,4
usually based on a single key study (see Chapter 1).5

6
If a TRV is to be  evaluated as a variable, the raw toxicity data (i.e., the response for each animal7

from studies that expose multiple animals to a range of doses) can be used to characterize inter-individual8
variability in response, both at a fixed dose and across different doses.  A variety of PDFs (e.g., normal,9
lognormal, beta, triangular) may also be appropriate for characterizing inter-individual variability in10
response.  Methods for selecting and fitting distributions to data are discussed in Chapter 3.11

12
For example, consider the hypothetical dose-response data set below:13

14

15
Dose (:g/kg-d)16

Response (% incidence)

Mean Stdev CV

017 2.9 1.0 0.34

418 6.2 1.9 0.31

819 14 4.5 0.32

1220 33 10 0.30

2021 78 18 0.23

3022 98 21 0.21

4023 107 28 0.26
24
25
26
27

Figure 5-7.  (Upper panel) plots these summary statistics (mean, standard deviation), and shows the28
best-fit continuous quadratic regression (CQR) equation line through the mean responses of the low dose29
groups.  Because (in this example) the raw data are not provided, it is not possible to determine the30
distribution of individual responses at a given dose.  One approach for describing this source of inter-31
individual variability is to assume the parameter estimates (AM, SD) define a truncated normal distribution32
of the following form:33

34
35 Responsed--  Truncated Normal (md,sd,min,max)
36

where,37
38

md = mean response at dose “d”39
sd = standard deviation of responses at dose “d”40
min = minimum plausible response41
max = maximum plausible response42
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Figure 5-7.  (Top) Hypothetical dose-response data used to describe inter-individual variability in1
response to a chemical stressor.  The solid circle is the mean response at each dose tested, and the error2
bars (the standard deviation) reflects the variability in response between different animals. The line3
through the low dose data is the best fit Continuous Quadratic Regression (CQR) line.  The line is not4
extrapolated to higher doses since this type of equation does not plateau. (Bottom)  Example dose-5
response data set with data for individual animals.  If the data are sufficient, the data set within a dose6
group can be used to model inter-individual variability in response.7

8
9

10
11
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A truncated distribution is used to prevent selection of implausible values from an un-bounded PDF. 1
Judgment is needed to estimate the bounds (truncation limits) of the distribution, but a conventional choice2
such as plus or minus two times the standard deviation may be appropriate.  Because (in this example) the3
coefficient of variation (CV = SD/AM) is approximately constant (about 0.3), the standard deviation (and4
hence the bounds of the distribution) can be estimated from the mean response at each dose.  Thus, each5
of the parameters of the truncated normal distribution of inter-individual variability in response might be6
modeled as a function of dose as follows:7

8

9
Figure 5-7 (bottom panel) illustrates an example where the individual data points are available from a10

selected toxicological study.  If sufficient numbers of animals are available, an empirical distribution can11
be fit to the data within each dose group using a commercial distribution-fitting program, and these12
distributions can then be used to predict the range of responses in a group of receptors exposed at some13
specified level.  In cases where the number of animals per group is too small to permit rigorous curve14
fitting, a distribution of responses may be modeled based on the statistics (mean, standard deviation,15
minimum, maximum) of the responses within a group, similar to the approach described above.16

17
When the number of animals is too small to support any meaningful evaluation of inter-individual18

variability in response within a dose group (e.g., data are available only for 2-3 animals per group), it is still19
often helpful to quantify uncertainty in the point estimate of TRV (i.e., TRVU).  For example, the best20
estimate of the TRV that is extrapolated from a dose-response study might be some value "x", but the true21
value might lie in the range [a, b].  Thus, TRVU might be modeled as a simple triangular PDF:22

23
24 TRVu --  Triangular (a,x,b)
25

Alternative probability distributions for modeling uncertainty may be fit to the data, or estimated using26
bootstrap techniques (Chapter 3, Appendix C).  Figure 5-8 illustrates a lognormal PDF for TRVU.  The27
uncertainty distribution for a TRV can sometimes be based on an evaluation of the differences between28
studies that have measured the same endpoint (e.g., see Figure 5-6), or on an evaluation of the uncertainty29
within a study (e.g., a range might span the lower bound to the upper bound of the ED10).  In general, the30
distribution chosen to model uncertainty in a TRV should reflect all relevant data that are available (both31
within and between studies). 32

md = 3.0 + 0.21 (dose)2

sd = 0.3 md

mind = md –  2 sd

maxd = md + 2 sd
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Figure 5-8.  Example PDF reflecting uncertainty in the true value of a specific toxicity reference value1
(TRV) such as the NOAEL or the LOAEL for a particular endpoint.2
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5.2 DECIDING WHEN TO USE PRA IN ECOLOGICAL RISK ASSESSMENT1
2

As shown previously in Figure 5-2, the ecological risk assessment process for Superfund includes a3
number of scientific/management decision points (SMDPs) (U.S. EPA, 1997a).  The SMDP is a point of4
consultation between the risk manager, the risk assessment team, and other stakeholders, and is intended5
to provide an opportunity for re-evaluation of direction and goals of the assessment at critical points in the6
process.  It is at these points in the ecological risk assessment that discussions occur concerning7
uncertainty in the risk assessment, and where the possible utility of PRA should be considered.8

9
One of the key SMDPs is an evaluation of whether or not a PRA is needed.  This SMDP is usually10

considered only after completion of both the screening level and initial iterations of baseline point estimate11
ecological risk assessments (Steps 1 to 7; U.S. EPA, 1997a; 1999).12

13
L Results of a point estimate approach generally should be presented together with a PRA.14

15
The results of a point estimate risk assessment will normally present the range of risks based on CTE16

and RME input assumptions and on the NOAEL- and LOAEL-based TRVs  (U.S. EPA, 1992b and17
1997a).  These results are generally presented in a 2 x 2 matrix, as shown below.  The highest estimate of18
risk (the largest HQ) is generally derived from the ratio of the RME exposure over the NOAEL-based19
TRV, while the lowest estimate of risk is generally derived from the ratio of the CTE exposure to the20
LOAEL-based TRV.  These two extremes can be used to screen out cases where PRA is not likely to21
be useful.  That is, if the risk to the RME receptor is below a level of concern using the NOAEL-based22
TRV, then risks to individuals and the population are likely to be low and PRA analysis is likely not23
needed.  If risks to the CTE receptor are above a level of concern using the LOAEL-based TRV, then24
risks to individuals and the population are likely to be of concern, and a PRA may or may not provide any25
additional useful information to the risk manager.  If the risks are intermediate between these two bounds,26
then risks are close to the decision threshold, and PRA evaluation is likely to be helpful in characterizing27
risks and supporting decision-making.28

29

TRV30 Exposure

CTE RME

NOAEL31 Intermediate HQ; use professional
judgment to assess need for further
evaluation

Highest HQ value; screen out if less than 1.0

LOAEL32 Lowest HQ value; screen in if greater
than 1

Intermediate HQ; use professional judgment
to assess need for further evaluation

33
When deciding whether or not to use PRA, the type of information that may be useful for risk34

management should be considered.  Exhibit 5-4  gives examples of the information that may be obtained35
using PRA.36

37
38
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An appropriate method for PRA (see Figure 5-3) can be selected based on the assessment endpoints1
and goals of the ecological risk assessment.  An example of the type of goal that would support each of2
the three methods is presented below:3

4
1. If a description of the inter-individual variability in exposure and risk is needed, then sensitivity5

analysis is generally conducted to identify key variables and a 1-D MCA of variability is6
completed.7

8
2. If a quantitative description of the uncertainty in the central tendency risk is desired, then a 1-D9

MCA can be performed based on the uncertainty around the mean values of the input variables.  10
11

3. If the ecological risk assessment requires characterization of the full range of exposures across12
different individuals in a population, then a 2-D MCA of variability and uncertainty in exposure13
and effects can be completed to quantify the uncertainty around the upper end as well as the14
central tendency exposure and risk.  This type of analysis is usually needed when evaluating a15
rare, threatened or endangered species, and may be needed for other receptors as well.16

17
This additional information, however, sometimes comes with an additional effort, primarily in the form18

of added time and resources to collect the necessary data, perform the analyses, and document the19
methods and the results.  Therefore, the risk assessor and risk manager should generally weigh the20
advantages and disadvantages of the proposed PRA (see Chapter 1).  General questions that can be21
addressed to ascertain if the PRA would provide useful information are highlighted below. 22

23
Is there a Clear Benefit to a PRA?24

25
In general, if the point estimate risk assessment results are sufficient to support remedial decision-26

making (i.e., it is clear either that there is a risk, or that there is no risk) in respect to where and how27
much to remediate, then a PRA is not recommended.  However, if the point estimate risk results lie close28
to the decision threshold (which is always the case for the boundaries of the gradient of contamination29
that lie between excess risk and adequate safety), then a PRA is often beneficial.  The evaluation of the30
utility of PRA is, however, expected to vary from site to site based on site-specific conditions and31
considerations, such as spatial scale.  It is for this reason that universal rules for choosing when to do or32
not to do a PRA of variability and/or uncertainty cannot be made here.  Some questions that may help33
guide the decision process are given below.34

35
C Would additional information from a PRA be useful to improve the basis for, and confidence of,36

decisions concerning the remedial action?37
38

C What are the additional costs and time associated with the PRA, including any necessary data39
collection as well as technical review of PRA calculations, results and assumptions?    40

41
C Are the potential costs associated with the remediation based on the point estimate results low42

compared with the costs associated with collecting the  additional data needed to perform a useful43
PRA?44

45
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C Would reducing uncertainty help in the selection of the most appropriate remedial alternative?1
2

C Can the degree of confidence (or lack thereof) in point estimates of exposure and risk be3
adequately described and presented without PRA?4

5
C Is it necessary to rank exposures, exposure pathways, sites or contaminants with estimates of6

confidence?7
8

C Is it necessary to associate a dose (or concentration) range with a probability of response?  Will a9
point estimate be insufficient for decision making due to excess uncertainty?10

11
Are there Sufficient Data to Complete a PRA of Variability?12

13
Data gaps may be a limiting factor in using PRA for characterizing variability in risk.  Often data are14

lacking for some of the variables in the risk model.  If these data gaps are minor and the associated15
variables do not contribute greatly to risk, a credible PRA may be performed without additional data16
collection.  An initial sensitivity analysis is important for assessing whether data gaps introduce important17
sources of uncertainty in the risk estimates.  Additional data collection efforts generally should be focused18
on the most influential variables.  19

20
Data quality requirements for a PRA of variability are generally similar to those for the point estimate21

ecological risk assessment, except that emphasis is placed on defining the full probability distribution of22
key variables rather than just selected statistics (e.g., mean, 95th percentile).  These data quality23
requirements are outlined in the Guidance for Data Usability in Risk Assessment (U.S. EPA, 1992c)24
and in Data Quality Objectives (U.S. EPA, 1993b).  Sensitivity analyses can help show where additional25
data can most effectively reduce uncertainty in PRAs.26

27
Will an Analysis of Uncertainty Add Helpful Information?28

29
PRA evaluations of uncertainty (as opposed to variability) are often very helpful in revealing the30

degree of certainty (or lack of certainty) around any particular estimate of exposure or risk (e.g., the CTE31
or RME).  Quantitative evaluations of uncertainty generally can be performed with little or no  additional32
data acquisition.  That is, the purpose of the analysis is to estimate the uncertainty around an exposure or33
risk estimate given the data at hand.  The only additional information needed to perform the analysis is34
an estimate of the uncertainty in the true parameter values of the key variables in the variability model.  In35
some cases, these estimates of uncertainty around parameter values may be developed from statistical36
analysis of the available data.  An example of how this might be done is provided in Exhibit 5-5. 37
Alternatively, professional judgment may be used to establish credible bounds on the parameters,38
especially when data are sparse.39

40
L Even in the presence of data gaps, uncertainty analysis using PRA can provide useful41

information.  Indeed, it is precisely when data are limiting or absent that a quantitative42
analysis of uncertainty may be most helpful.43

44
45
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1

EXHIBIT 5-5

 EXAMPLE DERIVATION OF UNCERTAINTY BOUNDS FOR THE PARAMETERS OF A PDF

There are many alternative methods that can be used to develop uncertainty bounds around the
parameters of a PDF, and the best approach will depend on the nature and extent of data available.  
Consider the following hypothetical case where the variable of interest is the dietary intake by a field
mouse.  Three separate studies on intake were located in the literature:

Study N
Dietary Intake (kg/kg-day)

Mean Stdev

1 10 0.22 0.08

2 5 0.31 0.11

3 20 0.18 0.07

Given that the these three studies are not statistically different from each other, the best estimates of
the mean and standard deviation can be calculated by pooling the values across the three studies:

Pooled mean = 3(Ni*Mi) / 3Ni = 0.21

Pooled stdev = sqrt[3(Ni-1)*(stdevi)2 / (3Ni -3)] = 0.079

The uncertainty around each of these pooled statistics is difficult to calculate rigorously, since the
bounds depend on the shape of the underlying distribution and the number of samples drawn. 
However, a reasonable approximation can usually be achieved by parametric bootstrapping, or by
assuming that the sampling distribution of the pooled mean is t-distributed and the pooled variance is
inverse chi-squared distributed (this will be true for pooled sample sizes that are reasonably large).  In
this case, the uncertainty around the pooled mean and pooled variance can be modeled as:

Pooled mean = 0.21 - (Tn-1)*0.079/sqrt(35)

Pooled stdev = sqrt [34*(0.079)2 / CHISQn-1]

where:

Tn-1 = T-distribution with n-1 degrees of freedom
CHISQn-1 = Chi-squared distribution with n-1 degrees of freedom
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Thus, lack of knowledge about the true parameters of a distribution is generally a weak reason for not1
performing an uncertainty analysis.2

3
What Are the Key Variables or Parameters? (Sensitivity Analysis)4

5
A quantitative sensitivity analysis (see Chapter 2) is used to identify the key sources of variability6

and/or uncertainty.  Sensitivity analyses can be performed at multiple points in the development of a PRA7
(see Chapter 1).  Sensitivity analysis is particularly useful prior to implementing a preliminary PRA.  The8
results of the sensitivity analyses can be used to focus data collection and modeling efforts in order to best9
reduce uncertainty and characterize variability.10

11
What are the opinions of the EPA Regional Ecotoxicologist or BTAG ?12

13
Ecological risk assessments for Superfund are usually produced under the direction of an EPA14

Regional Biological Technical Assistance Group (BTAG) coordinator (U.S. EPA, 1993a) or an EPA15
regional Ecotoxicologist (U.S. EPA, 1997a).  This guidance strongly recommends consulting with the16
BTAG coordinator at EPA and/or the EPA Regional ecotoxicologist regarding the need and the feasibility17
of applying a PRA for an ecological risk assessment.18

19
5.3 PRESENTING AND INTERPRETING PROBABILISTIC ECOLOGICAL RISK ASSESSMENTS20

21
There are many alternative methods that can be used to present the results of ecological PRA22

calculations of variability and/or uncertainty to risk managers and other readers.  This section provides a23
number of examples that illustrate some basic options, and provides a discussion of how the results may24
be used to derive a better characterization of exposure and risk than is usually possible using a point25
estimate approach.  It is important to note that, whether a point estimate approach is employed alone, or a26
probabilistic approach is employed in conjunction with the point estimate approach, interpreting the results27
of an ecological risk assessment cannot be reduced to a single or simple default rule.  Rather, the results28
are generally interpreted based on an understanding of the risk management goals and the assessment29
endpoint, the toxicological basis of the TRV, and the characteristics of the receptor being assessed.30

31
5.3.1 PRESENTING DESCRIPTIONS OF VARIABILITY32

33
There are several basic options for presenting a description of variability among different individuals34

within an exposed population, including a) the distribution of exposures (expressed either as dose or as35
concentration), b) the distribution of HQ and/or HI values (either by chemical and pathway, or summed36
across chemicals and pathways), and c) the distribution of responses (either the incidence and/or severity37
of an effect).  In all cases, the basic information which this presentation allows is an estimate of the38
fraction of a population that is exposed above some specified level of exposure or response, which in turn39
allows for a characterization of risks to individuals and/or the population.  Some examples are presented40
below.41

42
Comparing PRA and Point Estimate Results43

44
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In PRA, the results of the point-estimate calculations generally should be presented with the PRA1
results in order to highlight potential differences in assumptions and confidence in the risk estimates. 2
Specifically, in plots of exposure (dose or concentration), the range from the CTE to the RME should be3
shown.  In plots of risk (HQ or HI), the range from the LOAEL-based risk to the CTE receptor (CTEL)4
to the NOAEL-based risk to the RME receptor (RMEN) should be shown using a format similar to that5
below:6

7

   (use for plots of exposure)8 CTE < ---------------------> RME

9

 (use for plots of HQ and HI)10 CTEL <--------------------> RMEN

11
Furthermore, all baseline risk assessments should be presented in a tabular format recommended in EPA12
RAGS Part D guidance (U.S. EPA, 1998b), which facilitates the review and interpretation of results.13

14
Characterizing Variability in Exposure Dose15

16
Figure 5-9 provides an example distribution of inter-individual variability in doses (mg/kg-day) to a17

population of receptors (e.g., some species of wildlife) exposed at a site.  The top panel is a PDF, and the18
bottom panel is the same distribution plotted as a cumulative density function (CDF).  The variability in19
dose may be a result of either a)  variations between individuals  in intake (different ingestion rates,20
different fraction of time spent in the contaminated area, etc.), and/or b) variability in concentrations at21
different home range locations within the site.22

23
The information in graphs of this type may be used to characterize the range of hazards to different24

individuals in the receptor population by superimposing available information on the dose-response curve25
for the receptor and endpoint of concern.  In most cases, this will take the form of one or more point26
estimates of dose-based TRVs.  For example, the point estimates might be the estimated NOAEL and27
LOAEL for the receptor and endpoint of concern.  This presentation allows quantification of the fraction28
of the population that is expected to receive doses above the NOAEL and above the LOAEL.  For29
example, in this case the PRA of variability indicates that 84% of the population is exposed to doses30
below the NOAEL, 11% of the population is exposed to doses between the NOAEL and the LOAEL,31
and 5% is exposed to doses that exceed the LOAEL.  A more advanced form of this analysis would be to32
superimpose the full dose-response curve used to select the NOAEL and the LOAEL, rather than just33
two point estimates derived from the curve.  Figure 5-10 illustrates this approach. 34

35
Characterizing Variability in Exposure Concentration36

37
In some cases, TRVs that are used to evaluate risk are based on the concentration in a medium (e.g.,38

soil, sediment, water) rather than the dose resulting from exposure to the medium.  For example, this is39
most often the case for aquatic receptors (fish, benthic macroinvertebrates), terrestrial plants, and some40
terrestrial receptors (e.g., earthworms).  Similar to the approach described above, the distribution of41
concentrations in the medium is plotted as a PDF or CDF, and one or more TRV’s (expressed in units of42
concentration) are superimposed.  This allows an evaluation of the fraction of all measurements that43
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exceed a level of concern.  Note that a distribution for variability in concentration can generally be1
characterized using either a theoretical or an empirical distribution function (see Chapter 3).2
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Figure 5-9.  Example output of a PRA simulation of variability in dose among different individuals in a
population.  The upper panel is the PDF and the lower panel is the CDF.  Point estimates of two toxicity
reference values (the NOAEL and the LOAEL) are superimposed on the curves to indicate the fraction
of the population that is likely to be exposed at levels of potential concern (greater than the NOAEL) or of
probable concern (greater than the LOAEL).
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Figure 5-10.  Example output of a PRA simulation of variability in dose among different individuals in a1
population, with the full dose response curve (rather than just the NOAEL and the LOAEL) for some2
specified endpoint superimposed.3
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When the distribution of concentration values represents spatial variability (e.g., concentrations in soil1
at different locations within the site), the fraction of the distribution above some specified concentration-2
based TRV is an estimate of the areal extent of the site that exceeds the TRV.  This approach is most3
useful when the receptors of concern are not mobile or have small home ranges .  For example, this4
approach could be used to estimate the fraction of a site where soil concentrations may exceed levels that5
are phytotoxic to terrestrial plants or which cause adverse effects in soil invertebrates.  Of course, this6
same information can be obtained by plotting all of the measured values on a map and using appropriate7
software techniques to estimate iso-concentration lines that are above or below some specified TRV.8

9
In some cases, the distribution of concentration values may represent temporal variability in10

concentration in a medium at a location (e.g., the concentration in surface water at some particular11
sampling location in a stream or lake).  In this case, the distribution of values may be used to characterize12
both the frequency and magnitude of temporal fluctuations which exceed some specified TRV.  For13
example, this is often the approach taken when the TRV is an acute or chronic Ambient Water Quality14
Criterion (AWQC).  The upper panel of Figure 5-11 illustrates this approach.  In this example, the15
concentration of a contaminant in grab samples from a stream exceed the acute AWQC about 17% of16
the time.  This type of analysis is mainly useful for organisms that are exposed at or near the sampling17
station, and is not immediately applicable to organisms that are mobile and may  be exposed at widely18
separated locations where concentration values may be different.19

20
A variation on this approach is shown in the bottom panel in Figure 5-11.  In this case, the distribution21

of concentration values is not compared with one or more point estimates of a TRV in a specific receptor,22
but with a distribution of TRVs for a range of different receptors that may be exposed to that medium 23
For example, consider a number of different species of  aquatic organism (benthic invertebrates, fish,24
amphibians, etc.) that all reside in a particular location (e.g., a stream or lake) that has time-variable25
concentrations of a contaminant in water.  In this case, the results indicate that concentration values26
would occasionally reach levels that could affect some of the most sensitive species of receptors, but that27
most species would not be affected.28

29
Characterizing Variability in Hazard Quotient30

31
Figure 5-12 shows hypothetical distributions for Hazard Quotient (HQ) values calculated for a32

receptor population at a site.  This type of presentation allows an assessment of the fraction of the33
population that is expected to have an HQ value within a specified range (e.g., 0–1, 1–2, 2–4, >4, etc.). 34
As discussed below, interpretation of the distribution of HQ values depends on the toxicological basis of35
the TRV, but values below 1.0 are generally associated with little or no risk, while values above one are36
associated with the potential occurrence of adverse effects in individuals and/or populations.37

38
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Figure 5-11.  Example of methods used to evaluate ecological risk when the toxicity reference values1
(TRVs) are in units of concentration rather than dose.  This is usually the situation for assessment of2
exposures of aquatic receptors.  (Top)   Hypothetical distribution of concentration values of a contaminant3
in water at a particular sampling location.  The distribution indicates 17% of all measurements exceed the4
TRV (the Ambient Water Quality Criterion).  (Bottom)  The PDF on the left is the distribution of5
concentrations measured at different times at a sampling location.  The PDF on the right shows the range6
of toxicity reference values for different aquatic species exposed to this medium.  In this example,7
sensitive species (those with TRVs in the range of 20-50 mg/L) are likely to be significantly affected,8
while species with TRVs above 60-80 mg/L are likely to have relatively low risk of effect.9

10
11
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Figure 5-12.  Example output of a PRA simulation of HQ across different individuals in a population. 1
The upper panel is the PDF and the lower panel is the CDF.  Using an HQ of 1.0 as the frame of2
reference, if can be seen that about 85% of the population is exposed at levels that are not of concern,3
and that about 15% of the population has exposures that may be of concern.4

5
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Characterizing Variability in Response1
2

If inter-individual variability in the magnitude or severity of a response at a dose (concentration) and3
across doses (concentrations) can be modeled with PDFs (see Section 5.1.3 and Figures 5-6 or4
Figure 5-7), then Monte Carlo simulation techniques can used to quantify the distribution of responses5
rather than doses or HQs.  An example output of such a simulation is shown in Figure 5-13.  This type of6
distribution is conceptually similar to a distribution of doses or HQ values, except that more information is7
conveyed.  For example, based on the nature of the endpoint, the magnitude of the response may be8
categorized as either minimal, moderate or severe, and the distribution reveals what fraction of the9
population is expected to fall within each category.10

11
5.3.2 INTERPRETING DISTRIBUTIONS OF VARIABILITY12

13
In contrast to the case for human health risk assessments (where default risk-based decision14

guidelines are well established), there are no established default decision guidelines for identifying when15
risks to ecological receptors are of concern.  However, if risks to nearly all members of the population16
(including the RME individual) are below an appropriate NOAEL-based TRV, then it is likely that risks17
are within an acceptable range, both for individuals and the population.  Conversely, if risks to average18
members of a population exceed an appropriate LOAEL-based TRV, then it is likely that risks are not19
acceptable, either to individuals or the population.  For cases that fall between these bounding conditions,20
the level of effect that is considered acceptable generally should be defined by the risk assessor and the21
risk manager on a site-specific and receptor-specific basis by considering the following:22

23
1. The risk management goal24

25
If the risk management goal for the receptor being evaluated is protection of individuals (e.g., when26
the receptor is a threatened or endangered species), then risks should generally be considered27
acceptable if none or only a small percentile of the distribution exceeds a level of concern.  In the28
case when the risk management objective is population sustainability, the decision is more complex,29
since adverse effects on some members of the population may not lead to an unacceptable impact on30
the population. 31

32
2. The toxicological basis of the TRV33

34
In order to understand the biological significance of a distribution of variability in dose or HQ, it is35
important to understand the nature of the TRV being used to evaluate the distribution.  This includes36
the nature of the endpoint, its relevance to the assessment endpoint, and the shape (steepness) of the37
dose-response curve.  For example, an HQ of 1.5 based on an EC20 for reduction in reproductive38
success would likely be interpreted as more significant than an HQ of 1.5 based on the EC20 for an39
increase in liver weight.  Likewise, an HQ of 1.5 based on an EC0 for acute lethality would generally40
be more significant if the dose-response curve for lethality was steep than if it was shallow.41

42
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3. The characteristics of the receptor1
2

Ultimately, the question that should be addressed is whether an effect of degree “x” occurring in “y”3
percent of the population is biologically and ecologically significant.  This, in turn, depends on the4
attributes of the receptor being evaluated.  For example, a reduction of 10% in the reproductive5
success of a fecund and common species (e.g., the field mouse) might not lead to a significant6
reduction in population number, while the same effect could be of concern in a species with lower7
fecundity and/or lower population density (e.g., the moose).  Thus, the interpretation of an analysis of8
variability in exposure and/or effect would often benefit from the input of a trained population biologist9
with expertise in the receptor of concern.10

11
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Figure 5-13.  Example output of inter-individual variability in the magnitude of the toxicological response1
to a chemical stressor in different members of a population.  The upper panel is the PDF and the lower2
panel is the CDF.  As seen, about 64% of the population is expected to have no or minimal response,3
about 22% is expected to have a moderate response, and about 14% is expected to have a severe4
response.  This type of risk characterization is helpful in estimating whether population-level effects are5
likely to occur.6

7
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5.3.3 PRESENTING AND INTERPRETING DESCRIPTIONS OF UNCERTAINTY1
2

There are several different techniques for presenting information on uncertainty.  In the most3
common case (when a 2-D Monte Carlo simulation has been run to characterize both variability and4
uncertainty in some parameter such as exposure or risk), the results may be conveniently displayed in5
tabular format, similar to that illustrated in Table 5-1.  When graphic formats are used, it is generally6
easiest to use CDFs rather than PDFs to display the results, similar to those shown in Figure 5-14.  Such7
graphic formats of exposure distributions also allow superimposition of relevant TRVs  such as the point8
estimates and/ or the uncertainty distributions  of the NOAEL and the LOAEL for a particular endpoint9
(Figure 5-14, upper panel).  If the TRVs are treated as uncertain, then it is usually  best to plot the10
variability distribution and confidence bounds of the HQ rather than attempting to display the variability11
and uncertainty of both the exposure and the TRV in a single graph (Figure 5-14, lower panel).12

13
In the case when there is a clear decision guidance for deciding when risk is acceptable or14

unacceptable, then a display of the variability around that decision rule may be helpful.  For example,15
assume that a population biologist at a site has determined that if less than 15% of a population of field16
mice are exposed to doses that exceed the EC20 for reduction in pups per litter, then population level17
effects are not expected at that site.  Thus, the percent of the population exposed above the EC20 is the18
“critical statistic” that is needed for decision making.  A Monte Carlo analysis of variability in dose19
indicates that 11% of the population of field mice are exposed at levels above the EC20.  Based on this, it20
is concluded that exposure levels at the site are not likely to cause population-level effects and so would21
be acceptable.  However, the estimate that only 11% of the population exceeds the EC20 level is not22
certain, and there is a chance that the true percentage of the population above the EC20 actually exceeds23
the 15% level.  Figure 5-15 illustrates a graphical format that is useful for displaying information on the24
uncertainty around a critical risk statistic.  Two hypothetical distributions are shown, both with the same25
best estimate value (11%).  In one case, the uncertainty bound is relatively narrow, and there is only a26
small chance that the actual fraction of the population above the EC20 is higher than 15%.  In the second27
case, the uncertainty bounds are quite wide, and there is a large chance that at least 15% of the28
population could be exposed above the EC20.29

30
There are no default rules for how to utilize information on uncertainty bounds when making risk31

management decisions.  In most cases, the best estimate of the critical statistic (i.e., the CTE of the32
uncertainty distribution around the critical statistic) should be given greatest credence, since it is more33
likely to be correct than some other estimate.  However, values either higher or lower in the uncertainty34
range may be employed for decision-making (along with other relevant factors).  For example, the wider35
the uncertainty range (and the greater the probability that the true risk is substantially higher than the best36
estimate), the more reasonable it is for a risk manager to base a decision on the upper portion of the37
uncertainty distribution.  Likewise, the more serious the consequences of making an error, the more38
reasonable it is to make decisions based on the upper end of the uncertainty distribution.  This is especially39
true if the dose-response curve for the effect of concern is steep (i.e., a small misjudgment in the level of40
exposure could be associated with a large difference in the  effect on individuals and/or the 41
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Figure 5-14.  (Top)  Example plot of the variability and uncertainty in exposure.  The CDF format is1
used to help keep the figure simple.  The scale may be either linear or log (as in this example).  TRVs2
may be superimposed, either as point estimates, or as variability or uncertainty distributions (as shown in3
the example).  (Bottom) An example plot of variability and uncertainty in HQ or HI.4

5
6
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0.05 0.25 0.50 0.75 0.95 mean
0.05 1.5 2.0 2.5 3.2 4.4 2.7
0.10 2.8 3.8 4.7 5.9 8.0 5.0
0.15 4.2 5.7 7.1 8.8 12.0 7.5
0.20 5.8 7.9 9.8 12.2 16.6 10.3
0.25 7.7 10.4 12.9 15.9 21.8 13.6
0.30 9.8 13.2 16.4 20.3 27.6 17.3
0.35 12.3 16.5 20.5 25.3 34.4 21.5
0.40 15.1 20.3 25.2 31.2 42.2 26.5
0.45 18.5 24.8 30.8 38.0 51.6 32.3
0.50 22.4 30.1 37.3 46.1 62.5 39.3
0.55 27.2 36.6 45.3 55.9 75.7 47.6
0.60 33.1 44.4 55.1 67.6 91.4 57.8
0.65 40.3 54.2 67.2 82.8 111.5 70.4
0.70 49.6 66.9 82.8 101.9 137.1 86.7
0.75 62.0 83.2 103.3 127.7 171.3 108.3
0.80 79.1 106.5 132.0 162.7 219.2 138.4
0.85 104.9 141.5 175.2 215.8 290.0 183.6
0.90 149.6 200.9 249.4 307.6 414.3 261.4
0.95 250.7 336.5 416.9 516.9 695.3 438.3

Mean 65.3 87.2 107.8 133.4 179.0 113.0

Uncertainty PercentileVariability 
Percentile

Table 5-1.  Example of tabular format for displaying the results of a 2-D Monte Carlo simulation.  These1
data can also be presented graphically, using a format similar to that shown in Figure 5-14.2

3
4
5
6
7
8
9

10
11
12
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Figure 5-15.   Example format for displaying the uncertainty range around the “critical statistic” that will1
be used for decision making.  In this case, the critical statistic is the percent of the population whose2
exposures exceed the EC20 for reproductive effects.  Two example uncertainty distributions are shown,3
both with the same best estimate (11%).  In one case, the uncertainty range is relatively narrow, and in4
the other case the uncertainty range is wide.5

6
7



RAGS Vol. 3A ~ Process For Conducting Probabilistic Risk Assessment ~  DRAFT DO NOT CITE OR QUOTE

chap5_1299.ts.wpd December 30, 1999

Page 5-42

population).  In some cases, the uncertainty distribution may be so wide (spanning a range from far below1
to far above a level of concern) that a risk manager may decide that there is no appropriate basis to make2
a decision.  This result would support a recommendation to collect additional data to narrow the3
uncertainty range.4

5
5.3.4 COMBINING PRA RESULTS WITH OTHER LINES OF EVIDENCE6

7
By definition, risk characterization for an ecological risk assessment includes two phases: risk8

estimation and risk description (U.S. EPA, 1997a, 1998a).  Risk description is defined as the interpretation9
and discussion of the available information about quantitative risks related to the assessment endpoints,10
including a discussion of the lines of evidence supporting or refuting the risk estimate(s) and an11
interpretation of the significance of the risks related to the assessment endpoints.  This may include, for12
example, site-specific measurements of chemical exposure or toxicity (e.g., soil, water and sediment13
toxicity testing and measurements of benthic invertebrate community structure and function), as well as14
site-specific surveys of receptor diversity and/or abundance.  The risk assessor establishes a relationship15
between the assessment endpoints and measures of effect and associated lines of evidence in quantifiable16
and clearly described terms.  PRA results should help to establish these relationships and provide part of17
the basis for clear, transparent, reasonable, and consistent risk characterization recommended by EPA18
policy (U.S. EPA, 1995a).  The risk assessment process is iterative, and depends upon how much19
confidence risk managers have in making informed decisions based upon the uncertainties in the risk20
assessment.  If uncertainties are too great, then additional iterations of data collection can be pursued to21
fill data-gaps and reduce uncertainties.22

23
5.3.5 COMMUNICATING THE RESULTS OF PRA ANALYSES24

25
Risk communication (see Chapter 8) is generally the responsibility of the risk manager but may be26

shared with risk assessors (U.S. EPA, 1999).  The goals of risk communication generally include:27
28

C A clear description of the source(s) and cause(s) of risks 29
30

C The ecological relevance of the assessment endpoint(s) (e.g., earthworms may not be perceived31
as important by the public, but may play a critical role in the food web (U.S. EPA, 1999)) 32

33
C The potential adversity of the risk (e.g., nature and intensity, spatial and temporal scale and34

recovery potential)35
36

C The degree of confidence in the risk estimation and risk description37
38

C The rationale for the risk management decision39
40

C The remedial alternatives for reducing risk  41
42

The PRA results and the associated graphs illustrating the confidence about the risk estimation can be43
useful for risk communication.  Graphs help to describe confidence intervals and relative contributions of44
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exposure to risk.  These tools can prove equally useful for the evaluation of remedial alternatives if the1
risk estimates can be linked to associated costs of remediation in order to provide improved cost/benefit2
information to the risk manager.3

4
5.4 GENERAL GUIDELINES FOR SUBMISSION OF A PROBABILISTIC ECOLOGICAL RISK5

ASSESSMENT6
7

EPA has issued general non-program specific guidance on the use of Monte Carlo Analysis in risk8
assessment as Guiding Principles for Monte Carlo Analysis (“Principles”)(U.S. EPA, 1997b) (see9
Chapter 1).  As part of this guidance, EPA provides sixteen guiding principles for Monte Carlo Analysis. 10
These principles describe the key elements of a successful MCA and each should generally be considered11
equally important to the success of PRA for ecological risk assessments. 12

13
Dialogue among Stakeholders14

15
As discussed in Section 5.2, the risk assessors and risk managers should begin a dialogue concerning16

the potential application of the PRA to the ecological risk assessment.  An initial scoping meeting can be17
used to discuss the goals of the PRA and the potential value of the analyses.  Similar meetings are18
expected to occur when a proposal is made to move the PRA to a higher level of complexity.  19

20
The stakeholders who would participate in discussions may include the members of the public,21

representatives from state or county environmental agencies, tribal government representatives, natural22
resource trustees, and potentially responsible parties (PRPs) and their representatives (U.S. EPA, 1999).23

24
Preparation of the Work Plan25

26
A work plan should generally be submitted by the contractor or PRP to the BTAG coordinator and/or27

regional ecotoxicologist for review and for approval by the risk manager.  EPA strongly recommends that28
PRPs involve the Agency in the development of a workplan prior to commencing the analysis.  The work29
plan for a PRA is discussed in detail in Chapter 6 and highlighted in the Exhibit 5-6.30

31
The work plan for the PRA should be developed according to available guidance for workplans for32

point estimate ecological risk assessment (U.S. EPA, 1992b, 1997a) and generally should consider three33
elements:  1) the sixteen guiding principles of MCA (U.S. EPA, 1997b); 2) the eight guidelines for PRA34
report submission (U.S. EPA, 1997b; see Chapter 1, Section 1.7 and 3) the tiered approach to ecological35
risk assessment (U.S. EPA, 1997a; 1999). 36

37
The PRA Report38

39
The Principles guidelines explicitly identify eight conditions for submission of a successful PRA. 40

These conditions (detailed in Chapter 4) should be considered when designing and reporting results of a41
PRA for Superfund.  A checklist for reviewing a PRA is discussed in detail in Chapter 6 (see Section 6.2)42
and highlighted in Exhibit 5-7.43

44



RAGS Vol. 3A ~ Process For Conducting Probabilistic Risk Assessment ~  DRAFT DO NOT CITE OR QUOTE

chap5_1299.ts.wpd December 30, 1999

Page 5-44

Internal and External Review of the PRA Workplan and Report1
2

At the discretion of the EPA risk assessor or risk manager, the PRA work plan and report may be3
submitted for additional EPA internal review and/or an external review process.  EPA has new national4
and regional guidances for conducting peer reviews (U.S. EPA, 1998b).  The external peer review may5
be used in cases where the issues are complex or contentious and the opinions of outside expert peer6
review 7
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1

EXHIBIT 5-6  

WORKPLAN FOR A PRA  

C A statement of the assessment and measurement endpoints (or “measures of effect”, U.S.

EPA, 1998a) and receptor’s of ecological concern

C A depiction of the site conceptual model and food chain exposure models

C Summary of the point estimate risk assessment and rationale for the PRA

C Description of the methods and models to be used for the PRA

C Initial sensitivity analyses

C Preliminary Monte Carlo Simulation

C Refined sensitivity analyses and discussion of influential and uncertain variables

C Proposal for obtaining and using distributions

C Methods for deriving the exposure term(s)

C Methods for deriving the toxicity term(s)

EXHIBIT 5-7  

CHECKLIST FOR INCLUDING A PRA AS PART OF THE ERA (SEE CHAPTER 6)

C In general, risk assessments should include point estimates prepared according to current
Superfund national (preemptive) and regional (clarifying) guidance.

C A workplan should be submitted for review and approval by the appropriate EPA regional
office risk manager (RPM) and/or Biological Technical Assistance Group (BTAG)
coordinator prior to submission of the PRA.

C A tiered approach should be used to determine the level of complexity appropriate for the
ecological risk assessment.  The decision to ascend to a higher level of complexity generally
should be made with the risk manager, regional risk assessor and other stakeholders.

C The eight conditions presented in the EPA policy on PRA (U.S. EPA, 1997b; see Chapter 1,
Section 1.7) generally should be addressed by each PRA submitted to the Agency.

C Information in the PRA generally should possess sufficient detail that a reviewer can recreate
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EXHIBIT 5-81
2

EXAMPLE OF INPUTS FOR A GENERAL RISK MODEL FOR A REPRESENTATIVE WILDLIFE SPECIES3
4
5

HQ  =  Dose  ÷  TRV6
7
8

Dose (mg/kg-day) = Range from central tendency (CTE) to upper end (RME)9
10

Dose (mg/kg-day) = C @ (IR / BW) @ BA @ AUF11
12

where:13
14

C (mg/kg) = Range of concentration values (CTE to upper end) in an environmental15
medium , or PDF fit to measured values at the site16

17
Intake (kg/day) = Range of point estimates of intake of environmental medium (CTE to upper18

end), or PDF fit to measured or literature values19
20

BW (kg) = Range of point estimates of body weight (CTE to upper end), or PDF fit to21
measured or literature values22

23
BA = Range of point estimates of bioavailability (CTE to upper end), or PDF fit to24

measured or literature values25
26

AUF = Area use factor (fraction of time spent in exposure unit), either as a point27
estimate or as a PDF28

29
TRV (mg/kg-day) = Toxicity Reference Value; either a  point estimate of NOAEL, LOAEL,30

BMD, etc., or a PDF which characterizes variability or uncertainty in the31
TRV32

33
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can improve the PRA.  The external peer reviewers should possess no bias or agenda concerning the1
process or methods of the PRA and they should have no stake in the outcome of the risk assessment. 2
When reviewing a PRA report, the risk assessor should ensure that the tiered approach was followed and3
that the risk assessment conforms to the details of the workplan.  Both the checklist above and EPA’s4
guiding principles (U.S. EPA, 1997b) may be consulted.5

6
Changes in Scope after Completion and Approval of Work Plan7

8
The PRA generally should be completed as an iterative process moving from a simple level of9

complexity (receptors, number of variables) to a more complex level of effort (additional receptors and10
number of variables) as is indicated for an adequate site risk assessment.  As new information is11
developed, it needs to be considered with the future possibility of moving to a higher level of complexity. 12
The decision to use a more complex approach for quantifying variability and uncertainty generally should13
be accompanied by a revised workplan.14

15
Selection and Fitting of Distributions16

17
Identification of the sources of information data for the input distributions is one of the most important18

parts of the work plan process for the PRA, since erroneous inputs can create equally or more erroneous19
outputs for risk assessment.  Chapter 3 provides guidance on the selection of data and the fitting of20
distributions to the data.  Much of this guidance is fully applicable to the use of PRA in ecological risk21
assessments.  Special considerations regarding the selection and fitting of distributions for ecological22
evaluations include the following:23

24
C It is possible to evaluate both inter-individual variability and/or uncertainty in toxicity factors25

(TRVs).26
27

C The sources of information for input distributions are different.  For example, the most convenient28
source of exposure factors for wildlife is the Wildlife Exposure Factors Handbook (U.S. EPA,29
1993a).  In some cases, exposure data are very limited, and this may pose a difficulty to deriving30
reliable PDFs.31

 32
C It is not always as important to model inter-individual variability in exposure and risk in an33

ecological risk assessment as in a human health risk assessment.  In some cases, when risk34
decisions can be based on a description of risk to average (rather than RME) individuals in a35
population, it may be more helpful to model uncertainty in the estimate  average (CTE) exposure36
or risk using one-dimensional methods.37

38
In general, selecting and fitting PDFs for variability in exposure factors and toxicity benchmarks is39

one of the more challenging aspects of proceeding with a good PRA.  One can use default, site-specific40
or a combination of these distributions as well as point estimates in PRAs.  The EPA Wildlife Exposure41
Factors Handbook (U.S. EPA, 1993a) is generally the preferred source of  inputs for both point42
estimate and PRA based ERAs for terrestrial wildlife.  Site-specific data can be used as inputs when43
available and to the degree usable.  Exhibit 5-8 identifies some common input variables often needed for44
ERAs, based on a generic HQ (risk) equation utilizing  a dose-based TRV.  The inputs may be either45
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point estimates or distributions with shapes and ranges that are supported by literature or by site-specific1
exposure and/or toxicity data.  Common shapes are normal, lognormal, triangular, and uniform; minimums2
and maximums generally should represent plausible extremes based on available site-specific data and3
judgment.  Software programs can help fit distributions to data with increasing statistical power. 4
Deviations from any default values or ranges specified by guidance generally should be supported with5
defensible site-specific data.  6

7
Knowledge of the relative homogeneity or heterogeneity of the contaminant concentrations within an8

Exposure Unit Area (often related to home ranges) is essential in deriving useful PDFs for wildlife9
exposure.  The utility of analytical data (soils, sediment, surface water or tissues) generally should be10
evaluated in terms of the representativeness of samples in characterizing chronic exposures.  The11
randomness and density of sample locations, media characteristics related to intake, integrity of samples,12
and proper analytical methods may be important considerations.  Sensitivity analyses should be performed13
on the inputs to the risk model to determine which factors have the greatest influence on the output14
distributions.  Data-gaps can generally be prioritized for sampling and analyses in an attempt to reduce15
uncertainties in the risk assessment.16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
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EXHIBIT 6-1

CONTENTS OF THE WORKPLAN

1. Statement of the ecological assessment
endpoints and/or human risk

2. Value added by conducting a PRA and
proceeding to the subsequent tiers

3. Summary of the point estimate risk
assessment and the rationale for the PRA

4. Discussion of adequacy of environmental
sampling for PRA or moving to a successive
tier (e.g., data quality issues)

5. Description of the methods and models to be
used (e.g., model and parameter selection
criteria)

6. Proposal for obtaining and basis for using
exposure factor distributions

7. Methods for deriving the concentration term

8. Initial sensitivity analysis

9. Preliminary Monte Carlo simulation

10. Refined sensitivity analysis and discussion of
influential and uncertain variables

11. Software (i.e., date and version of product,
random number generator)

12. Proposed schedule, discussion points, etc.

CHAPTER 61

2

WORKPLAN AND CHECKLIST FOR PRA3
4
5

6.0 INTRODUCTION6
7

This chapter outlines the basic concepts associated with developing a workplan prior to the initiation8
of a probabilistic risk assessment (PRA), and using a checklist when reviewing a PRA.  Like the quality9
assurance project plan (QAPP), the workplan for PRA generally should document the combined10
decisions or positions of the RPM, risk assessor, and stakeholders involved in the risk assessment.  There11
are many stakeholders in a risk assessment12
(see Chapter 1, Section 1.6), and it is important13
to involve and engage all stakeholders early in14
the decision-making process.  These are15
important steps that will save time and effort.  16

17
6.1 WORKPLAN18

19
In general, PRAs may be developed by20

EPA, EPA contractors, or a potentially21
responsible party.   In each case, it is important22
to develop a workplan early in the risk23
assessment process.  PRA’s to be submitted by24
a contractor or potentially responsible party25
(PRP) should generally be submitted for EPA26
review before commencing the analysis.  The27
workplan should describe the software to be28
used, the exposure routes and models, and input29
probability distributions and their basis (i.e.,30
relevance to the site-specific contamination and31
pathways), including appropriate literature32
references.  Examples of contents of the33
workplan are given in Exhibit 6-1.  It is34
important that the risk assessor and risk35
manager discuss the scope of the probabilistic36
analysis and the potential impact on the37
Remedial Investigation/Feasibility Study.   38

39
L Given the time and effort that can be40

expected to be invested in41
conducting a PRA, it is important42
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that a workplan undergo review and approval by EPA, prior to proceeding with the1
assessment.  2

3
EPA generally will not accept probabilistic analysis where a workplan for the analysis has not been4

initially submitted to the Agency and approved by the Regional risk assessor and RPM.  Exceptions to this5
process may be considered on a case-by-case basis.  As the assessment moves to a higher tier, the6
workplan should be revised or a new workplan developed.  The assessment should generally be restricted7
to the chemicals and pathways of concern that contribute the greatest risk.8

9
Conducting a PRA is an iterative process.  In general, as new information becomes available, it10

should be used to evaluate the need to move to a higher tier.  The decision to move an assessment to a11
higher tier of complexity should result in a revised workplan and consultation with the Agency.  The12
previous PRA, and its sensitivity analysis, should be included in the revised workplan, along with a point13
estimate risk assessment based on any data collected as part of a lower tier.14

15
Throughout the process of developing the PRA, the EPA risk assessor and the personnel involved in16

developing the assessment should have a continuing dialogue to discuss the many decisions and their17
potential impact on the assessment.  This dialogue, along with interim deliverables, will help to ensure that18
the risk assessment report will meet the needs of the Agency and that any problems are identified and19
corrected early in the process.20

21
6.2 CHECKLIST FOR REVIEWERS22

23
The exposure pathways and chemicals considered in a PRA should be clearly stated and related to24

the assessment endpoint.  Often, the simplest way of doing this is to use the site conceptual model.25
26

Table 6-1 provides a list of major points that may be used to evaluate the quality of a probabilistic27
assessment.  This is not an exhaustive list.  The ultimate judgment of the acceptability of a PRA is the28
responsibility of the regional EPA personnel.29

30
The issues that a reviewer should focus on may be different for each assessment. The workplan and31

the assessment should address each of the items on the checklist, but the workplan may include additional32
items.  The reviewer is responsible for ensuring that the workplan and the assessment are complete and33
of sufficient quality to support a risk management decision under the NCP.34

35
The report should include a discussion of the results of assessment and how they relate to the point36

estimate of risk and hazard.  A clear and concise description of what the results mean is a necessary part37
of each report.  This description is best provided in an executive summary near the beginning of the38
document.39

40
41
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6.3 INTERNAL AND EXTERNAL REVIEW1
2

There are two levels of review that may be appropriate for a PRA.  If an EPA reviewer feels they3
need help with a review, other EPA personnel may be contacted formally or informally to provide4
additional review capabilities.  EPA personnel should also review the draft workplan for PRA to evaluate5
the appropriateness and consistency with Agency guidance.  If EPA personnel are contacted early in the6
risk assessment process, the review can occur in a more productive and timely manner.7

8
When the issues at a particular site are complex or contentious, EPA reviewers may also wish to9

obtain the services of outside experts for peer review.  According to EPA’s Peer Review Policy10
Statement dated June 7, 1994 (U.S. EPA, 1994), “Major scientifically and technically based work11
products related to Agency decisions normally should be peer-reviewed.”  External peer review should be12
considered when allocating resources for a PRA.  EPA reviewers generally should select external peer13
reviewers who possess no bias or agenda regarding the process or methods of PRA. 14
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Table 6-1.  Example of a Generic Checklist [2 pages]1
2

Focal Point3 UU Evaluation Criterion
Objectives and Purpose4
Assessment5
Endpoints6

UU Are the human health and/or ecological assessment endpoints clearly stated and consistent
with the workplan?

Benefits7 UU Are the rationale for, and benefits of, performing the PRA clearly stated and consistent with
the workplan?

Site Conceptual8
Model9

UU Is there a description or graphic representation of the receptors and pathways considered in
the assessment?  Has the PRA addressed each of the pathways for completeness (e.g.,
sources, release mechanisms, transport media, route of entry, receptor)?

Separation of10
Variability and11
Uncertainty12

UU What is the modeling strategy for separating variability and uncertainty in the PRA?  Is this
strategy consistent with the assessment endpoints?

Input Distributions and Assumptions13
Variability and14
Uncertainty15

UU Is there a clear distinction and segregation of distributions intended to represent variability
from distributions intended to represent uncertainty?

Data sources16 UU Are the data or analysis sources used in developing or selecting the input distributions
documented and appropriate for the site? 

Distribution Forms17 UU Are the analyses used in selecting the form of the distribution adequately documented (e.g.,
understandable and repeatable by a third party?)

Distribution18
Parameters19

UU Are the analyses used to estimate the distribution parameters adequately documented?

Distribution Tails20 UU Do the estimation methods precisely depict the tails of the input distributions; how was this
evaluated?  Is there sufficient information to depict tails for empirical distributions?  Are
these estimated as exponential tails with bounding values?

Truncations21 UU Are any input distributions truncated?  Do these truncations make sense?  Should
truncations be applied to any of the distributions?

Concentration Term22 UU Is the derivation of a point estimate or distribution for the concentration term adequately
documented?  Is sufficient information provided to enable the reviewer to recreate the
concentration term?

Variable23
Correlations24

UU Have variable independence and correlations been addressed? Has the methodology for
representing variable correlations in the model been documented and is it reasonable in terms
of the variables, the site, and the statistical approach?

Time Step25 UU Has the basis for the time step used in the model been documented?  Is a single time step
used, or do variables have different time steps? Are the time steps conceptually reasonable
for the variables, for the site?  Has the time step been evaluated in the sensitivity analysis?

Sensitivity Analysis26 UU Has a sensitivity analysis been conducted? Are the methods used in the analysis statistically
valid? What did the analysis reveal about uncertainties in the assessment and the relative
contributions of input variables to uncertainty?
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Model Structure and Computational Mechanics1
Flow Chart2 UU Is a diagram of the computational sequence provided so that the pathways of inputs and

outputs and data capture can be understood and easily communicated? 

1-D/2-D MCA3 UU Is a 1-D MCA or 2-D MCA being implemented in the PRA?  What is represented by either
or both dimensions?

Algorithms4 UU Are all algorithms used in the model documented in adequate detail to recreate the analysis? 

Integration5 UU Are the algorithms used in numerical integration identified and documented?

Dimensional6
Analysis7

UU Has a unit analysis been conducted to ensure that all equations balance dimensionally?

Random Number8
Generation9

UU What random number generator is used in model computations? Is it robust enough?  What
reseeding approach is used to minimize repeated sequences? 

Results of Modeling10
Completeness11 UU Are all the exposure routes identified in the conceptual site model and workplan addressed in

the model results? Has the PRA fulfilled the objectives and satisfied the purpose stated in
the workplan?

Point Estimate12
Calculation13

UU Has a point estimate calculation, using mean or median values of the input distributions, been
performed?  How do these results compare with the central tendencies calculated with the
probabilistic model? How do the RME estimates compare?  Have the similarities or
differences between risk estimates from the point estimate and probabilistic approaches been
adequately addressed?

Stability of Output14
Tails15

16

UU Has the stability of the high end tail of the risk distribution been adequately evaluated?  How
stable are the estimated tails (in quantitative terms?)  Is this level of stability adequate to
support the risk management decisions that the model is intended to support?

Significant Figures17 UU Is the number of significant figures used in the output reasonable and consistent with model
uncertainty?

Limitations18 UU  Are the strengths and weaknesses of the PRA methodology and limitations of the results for
decision making clearly presented?

Clarity19 UU Are the results and conclusions clearly presented and consistent with model output (e.g.,
CTE and RME identified in the Executive Summary along with discussion of uncertainty)?

Graphics20 UU Are the graphics included that show both the risk distribution and PRA results (e.g., CTE
and RME risk)?

21
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EXHIBIT 6-2

FOCAL POINTS FOR PRA REVIEW

1. Clarity of and conformation to objectives;
2. Scientific basis and documentation of input

distributions and assumptions;
3. Model structure and computational

mechanics; and
4. Results, including, limitations,

reasonableness, and clarity of
documentation.

6.4 FOCAL POINTS FOR PRA REVIEW1
2

In reviewing a PRA, it is recommended3
that a systematic approach be adopted to ensure4
that all key technical elements of the PRA are5
evaluated and potential weaknesses are identified. 6
A review check list can facilitate this process and 7
promote consistency in the reviews of PRAs. 8
Such a list can be developed from EPA’s guiding9
principles (U.S. EPA, 1997) and other reviews on10
the subject of PRA quality review (e.g.,11
Burmaster and Anderson, 1994).12

13
In general, the review of a PRA can be14

organized into four focal points listed in15
Exhibit 6-2.  PRAs can vary in complexity, from16
relatively simple to very complicated; thus, the17
review strategy may need to be customized for18
specific sites. 19

20
Experience with PRA methodology can be invaluable in the review process.  Risk assessors21

should become familiar with PRA methodology.  Additional experience with PRA methodology can be22
gained by obtaining actual site data and performing a probabilistic assessment using this data, and by23
reviewing and discussing other probabilistic risk assessments. Examples of PRAs can be found in the24
scientific literature, as well as in the administrative records of Superfund sites, which are available at EPA25
regional offices.26

27
6.5 ADDITIONAL INFORMATION28

29
Uncertainty: A Guide to dealing with Uncertainty in Quantitative Risk and Policy Analysis30

(Morgan and Henrion, 1990) and Probabilistic Techniques in Exposure Assessment (Cullen and Frey,31
1999) provide excellent philosophical and practical treatises on probabilistic risk assessment.  These32
works are highly recommended to risk assessors who wish to know more about probabilistic risk33
assessment.  The Summary Report for the Workshop on Monte Carlo Analysis (U.S. EPA, 1996) and34
the Summary Report for the Workshop on Selecting Input Distributions for Probabilistic35
Assessments (U.S. EPA, 1999) are other sources of information to learn more about PRA.36

37
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CHAPTER 71

2

USING PRA TO CALCULATE PRELIMINARY REMEDIATION GOALS3
4

7.0 INTRODUCTION5
6

Chemical-specific preliminary remediation7
goals (PRGs) are concentration goals for8
individual chemicals that exist in contaminated9
media under a specific land use (see Exhibit 7-10
1).  PRGs may be either: (1) concentrations11
based on applicable or relevant and appropriate12
requirements (ARARs); or (2) concentrations13
determined from exposure scenarios evaluated14
prior to or based on results of the risk15
assessment.16

17
The National Oil and Hazardous Substances18

Pollution Contingency Plan (NCP) (U.S. EPA,19
1990) outlines two major objectives of risk20
assessment: (1) to determine if remediation is21
necessary (i.e., Is there unacceptable risk at22
the site?); and (2) if so, to determine chemical23
concentrations associated with levels of risk that24
will be adequately protective of human health25
and the environment.  Chapter 7 deals with this26
second objective within the framework of PRA.27

28
PRGs are specific to both the medium29

considered and the land use (U.S. EPA, 1991). 30
PRGs are used in the development of remedial31
alternatives.  Risk-based PRGs are used when32
ARARs do not exist or in situations when33
ARARs are not sufficiently health-protective. 34
To develop a PRG based on a point estimate of35
risk, the standard risk equation is algebraically36
rearranged to solve for a chemical-specific37
concentration goal that corresponds to a 10-6 risk38
level for carcinogens or an HI of 1 for39
noncarcinogens.  For PRA, development of40
PRGs is somewhat more involved.  41

42
This chapter first reviews the issues associated with deriving PRGs from both point estimate risk43

assessment and PRA.  Next, two distinct methods for developing PRGs from PRA are discussed. 44
Finally, the details of developing PRGs for various environmental media are presented.  A clear45
understanding of the risk assessment goals is needed when using probabilistic methods to develop PRGs. 46
Examples are presented in Appendix D.47

EXHIBIT 7-1  

TERMINOLOGY FOR CHEMICAL

CONCENTRATIONS

Preliminary Remediation Goal (PRG) -
health-based chemical concentration in an
environmental media associated with a particular
exposure scenario.  PRGs may be developed
based on generic exposure scenarios prior to the
baseline risk assessment (U.S. EPA, 1991).

Site-specific PRG - health-based chemical
concentration based on exposure scenarios in
the baseline risk assessment.  Generally
calculated for a variety of exposure scenarios.

Remediation Goals (RG) - health-based
chemical concentration in an environmental
medium chosen by the risk manager as
appropriate for a likely land use scenario.

Cleanup Level - chemical concentration
chosen by the risk manager after considering
both RGs and the nine selection-of-remedy
criteria of the NCP (U.S. EPA, 1990; 40CFR
300.430(e)(9)(iii)).  Also referred to as Final
Remediation Levels (U.S. EPA, 1991),
chemical-specific cleanup levels are
documented in the Record of Decision (ROD). 
A cleanup level may differ from a PRG because
risk managers may consider various
uncertainties in the risk estimate, the technical
feasibility of achieving the PRG, and the nine
criteria outlined in the NCP.
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EXHIBIT 7-2

DEFINITIONS FOR CHAPTER 7

95% UCL for mean -  The 95 percent upper confidence limit for a mean of a population is defined as
a value that, when repeatedly calculated for randomly drawn subsets of size (n), equals or
exceeds the true population mean 95 percent of the time.  Although the 95% UCL provides a
conservative estimate of the mean, it should not be confused with a 95th percentile.  As
sample size increases, the difference between the UCL for the mean and the true mean
decreases, while the 95th  percentile of the distribution remains relatively unchanged.

95th Percentile - The number in a distribution such that 95 percent of the values are less than the
number and 5 percent are greater.

ARARs - Applicable or relevant and appropriate requirements.  The NCP states that ARARs shall
be considered in determining remediation goals.  If an ARAR meets the requirements of the
NCP (U.S. EPA, 1990) for protectiveness, it may be selected as a site-specific cleanup
level.

Backcalculation - A method of calculating a PRG that involves algebraic rearrangement of the risk
equation to solve for concentration as a function of risk.

Exposure Point Concentration (EPC)  - The contaminant concentration within an exposure unit to
which receptors are exposed.  Estimates of the EPC represent the concentration term used
in exposure assessment.

Exposure Unit - For Superfund risk assessment, the geographical area about which a receptor moves
and contacts a contaminated medium during the period of the exposure duration.

Iterative Truncation - A method of calculating a PRG that involves developing an expression for the
concentration term in which high-end values are “truncated” to reduce the maximum
concentration, and calculating risks associated with the reduced concentration.  The method
may be repeated with consecutively lower truncation limits until risk is acceptable.  Iterative
truncation methods avoid difficulties associated with applying Monte Carlo analysis to a
backcalculation (see above).

Maximum Detected Concentration (MDC) - The maximum concentration detected in a sample (i.e.,
a set of measurements).

Preliminary Remediation Goal (PRG) - health-based chemical concentration in an environmental
media associated with a particular exposure scenario.  PRGs may be developed based on
applicable or relevant and appropriate requirements (ARARs), or exposure scenarios
evaluated prior to or as a result of the baseline risk assessment.

Remediation Action Level (RAL) - A concentration such that remediation of all concentrations
above this level in an exposure unit will result in the 95% UCL being reduced to a level that
does not pose an unacceptable risk to an individual experiencing random exposures.  The
RAL will depend on the mean, variance, and sample size of the concentrations within an
exposure unit as well as considerations of short term effects of the chemicals of concern. 

True Mean Concentration - The actual average concentration in an exposure unit.  Even with
extensive sampling, the true mean cannot be known.  Only an estimate of the true mean is
possible.  With more samples, the estimate of the mean should be closer to the true mean.

1

2
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1
7.1 WHEN TO USE PRA FOR DEVELOPING PRGS2

3
In general, PRA methodology is appropriate for developing PRGs in cases where PRA is also used to4

estimate site-specific risks.  Embedded in a site-specific PRG are all of the exposure assumptions and5
toxicity metrics used in the risk assessment. 6

7
L EPA will generally not accept a PRG with probabilistic methods if8

probabilistic methods were not used in the risk assessment.  The9
tiered approach for PRA should be followed.10

11
As indicated by the tiered approach recommended by this guidance for conducting a PRA (Chapter 1,12
Figure 1-4), a point estimate risk assessment (Tier 1) should always accompany a PRA because it13
provides information that may be used for risk-management decision making.  Using the tiered approach,14
a risk assessor can determine the appropriate level of complexity that is supported by the available15
information on exposure and toxicity.  These recommendations apply to both the risk assessment and the16
calculations used to select a PRG.  If a PRA is performed, the risk manager may select a PRG based on17
either the PRA or the point estimate risk assessment.  The ultimate cleanup level will be based on the18
PRG selected by the risk manager and the nine remedy selection criteria (U.S. EPA, 1990; 40CFR19
300.430(e)(9)(iii)). 20

21
7.2 GENERAL CONCEPTS ABOUT PRGS 22

23
PRGs developed from point estimate and probabilistic risk assessments will be discussed in this24

section to compare and contrast the two approaches.25
26

For both types of risk assessments, the PRG is analogous to the method used to characterize the27
exposure point concentration (EPC) in the risk equation.  For example, if the 95% upper confidence limit28
for the mean (95% UCL) is used as an EPC, then the PRG should represent a 95% UCL (Bowers et al.,29
1996).  Similarly, if a maximum detected concentration (MDC) is used as an EPC, then the PRG30
represents the maximum concentration associated with a health-protective level of risk.  If uncertainty in31
the EPC is characterized by a probability distribution rather than a point estimate, then the PRG will32
correspond to an estimated level of confidence in a target risk estimate.  The calculation of PRGs from33
point estimates of RME risk has been discussed in a number of EPA guidance documents (RAGS I, Part34
B; Region 3 Risk-based Concentration (RBC) tables; Region 9 PRG tables; U.S. EPA, 1995).  The35
calculation of PRGs from distributions of variability and uncertainty in risk is discussed in this chapter.36

37
Calculation of the EPC generally requires knowledge of not only chemical concentration38

measurements within the exposure unit but also the receptor’s behavior, which determines the exposure39
unit.  For all exposure scenarios, an exposure unit should represent a geographical area in which the40
majority of the activities of individual receptors occur.  Both PRGs and EPCs should be considered with41
the concept of the exposure unit in mind, and risk assessments should be directed at the area that42
represents the exposure unit for the target receptor.  If an individual is randomly exposed within the same43
exposure unit over a long period of time, the most appropriate metric for the EPC is the true arithmetic44
mean concentration with the exposure unit.  However, if the exposure is not truly random, a weighted45
mean may be preferable over the arithmetic mean as a metric for either the EPC or the subsequent PRG. 46
Approaches for weighting the sample data according to site-specific exposure patterns generally should47
be developed in consultation with EPA regional risk assessors.  In addition, for some sites, it may be48
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appropriate to distinguish between the exposure unit and the remediation unit, which is generally a subset1
of the exposure unit where remediation may take place.  For simplicity in this guidance, it is assumed that2
the exposure unit and remediation unit represent the same area.  Risk assessors may refer to EPA’s Soil3
Screening Guidance (U.S. EPA, 1996) for further guidance on the exposure unit.4

5
In point estimate risk assessments, the 95% UCL is generally used as the EPC to account for the6

uncertainty associated with estimating the true mean concentration within an exposure unit.  When the7
sample size is small and the variance is large, the 95% UCL may exceed the maximum detected8
concentration (MDC).  In such a case, the MDC is generally used to estimate the EPC, although the true9
mean may still be higher than this maximum value (U.S. EPA, 1992).  For poorly characterized sites,10
there may be considerable uncertainty that site remediation will be sufficient to reduce the 95% UCL to a11
health-protective level. 12

13
The following paragraphs refer to pre-remediation and post-remediation 95% UCLs.  The pre-14

remediation 95% UCL should generally be determined based on existing site sampling at the time of the15
Remedial Investigation (RI) prior to remediation.  The post-remediation 95% UCL is a prediction of site16
conditions after remediation.  The post-remediation value can be determined by substituting the nondetect17
level (generally, half the laboratory reporting limit) for some of the high measurements in the18
concentration sample and recalculating the 95% UCL.  The post-remediation value represents expected19
future conditions at the site after remediation has occurred. 20

21
If the risk associated with a pre-remediation 95% UCL exceeds a protective level of concern, a risk22

assessor may determine how much lower the concentrations would need to be in order to achieve an23
acceptable risk level.  In other words, a maximum allowable concentration may be determined, which this24
guidance will refer to as a remediation action level (RAL) for purposes of site remediation.  The25
challenge for the risk assessor is to identify the RAL that yields an acceptable post-remediation EPC.  As26
discussed above, if the pre-remediation EPC is represented by the 95% UCL, then generally the post-27
remediation EPC should also be represented by the 95% UCL, rather than the maximum post-remediation28
concentration.  Lowering the RAL effectively lowers the estimated post-remediation 95% UCL.  The29
appropriate RAL depends on the concentrations measured within an exposure unit, and the method used30
to estimate the 95% UCL.  For example, if the 95% UCL is estimated from concentrations fit to a31
lognormal distribution (U.S. EPA, 1992), the appropriate RAL will depend on the sample size, mean, and32
variance of the concentrations.  If non-parametric methods are used to estimate the 95% UCL (U.S.33
EPA, 1997), the RAL will depend on the sample size and the skewness of the concentrations. 34
Furthermore, for soil contamination scenarios, assumptions regarding the extent of the exposure unit35
requiring remediation, as well as the concentrations in backfill, may play a role in determining an36
appropriate RAL.  For cases of poor site characterization, the level will be lower than that of well-37
characterized sites.  In general, as uncertainty increases, a greater remediation effort may be needed to38
achieve the same health-protective level.39

40
In PRA, either a point estimate or probability distribution may be used to characterize uncertainty in41

the arithmetic mean concentration (see Chapter 4).  The tiered approach described in Chapter 1 (see42
Figure 1-4) can be followed to determine if a probability distribution should be developed.  A distribution43
for uncertainty in the post-remediation EPC will depend on the arithmetic mean, variance, and number of44
measurements in the sample, as well as the remediation action level.  The appropriate RAL is generally a45
level that reduces the EPC sufficiently to yield an acceptable risk at the percentile of the risk distribution46
chosen to represent the RME individual.  Multiple simulations of the PRA model will generally be needed47
to identify a health-protective RAL.  (See Section 7.3.2 on Iterative Methods).48
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To ensure that actual cleanup based on a RAL is protective, post-remedial confirmation sampling is1
generally required.  This step in the risk management process is emphasized further in Section 7.4 on2
Measurement of Attainment.3

4
EPA has advocated a Data Quality Objectives (DQO) process to determine the type, quantity, and5

quality of data needed to make defensible decisions (U.S. EPA, 1993).  This guidance also advocates the6
DQO process to provide measures of confidence that EPCs and PRGs are representative and appropriate7
for characterizing site conditions.8
  9

In PRA, the risk manager will be interested in developing a PRG that accounts for both variability and10
uncertainty.  Ultimately, the risk management goal is to protect a large percentage of the population with11
reasonable confidence, thus remaining in accord with the NCP (U.S. EPA, 1990).   To the extent12
practicable, variability and uncertainty are treated separately in PRA.  By characterizing variability, risk13
managers can identify a risk estimate from a probability distribution for risk (i.e., the RME range14
discussed in Section 4.4).  By characterizing uncertainty, the confidence in the risk estimate can be15
evaluated. 16

17
It is appropriate to distinguish between variability and uncertainty in the risk estimate from PRA. 18

While variability in the EPC may be characterized for scenarios evaluated using microexposure event19
(MEE) analysis (see Appendix E, Section E.2), typically uncertainty in the EPC is of greatest interest.  In20
a 1-D MCA, probability distributions will be used to characterize variability or uncertainty, but not both.  It21
is anticipated that for human health risk assessments, probability distributions will typically characterize22
variability in any exposure variable except the EPC, which will be represented by a point estimate for23
uncertainty in the mean concentration (e.g., the 95% UCL or MDC).  In contrast, for ecological risk24
assessments (see Chapter 5), probability distributions for uncertainty in toxicity and exposure variables25
(including the EPC), are typically of greatest interest in a 1-D MCA.26

27
In a 2-D MCA, probability distributions may be developed to characterize both variability and28

uncertainty (see Section 4.3 and Appendix E).  Such analyses may be used to determine the relative29
contribution of uncertainty in the EPC to uncertainty in the risk estimate (see Chapter 2 on Sensitivity30
Analysis).  31

32
7.3 METHODS FOR CALCULATING PRGS33

34
There are two primary methods for developing PRGs from PRA: backcalculation and iterative35

methods using predicted post-remediation concentrations.  Iterative truncation of the pre-remediation36
concentrations is a common iterative method..  37

38
L EPA recommends that PRGs be developed using iterative methods. 39

40
In some unique cases, given constraints on the shapes of the input distributions, an analytical solution for41
the output distribution may be used.  In this case, a Monte Carlo simulation would not be needed.42

43
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7.3.1 BACKCALCULATION1
2

Traditionally, risk is calculated as a function of multiple exposure variables, including the concentration3
term, and toxicity value (Equation 7-1).  If one or more of the exposure variables is described by a PDF, a4
Monte Carlo simulation will yield a distribution for risk (see Chapter 1).  Backcalculation methods can be5
envisioned as holding the risk level at a constant and acceptable level (e.g., risk equal to 10-6 or HI equal6
to 1) and then algebraically reversing the risk equation to solve for the concentration term (Equation 7-2). 7
A Monte Carlo simulation using Equation 7-2 will yield a distribution of concentrations that reflects the8
combination of distributions from all other exposure variables. 9

10
11
12
13
14
15
16
17
18

where the toxicity metric is based on the cancer slope factor (CSF) or the reference dose (1/RfD) for the19
chemical in the exposure medium, C is the concentration term, and V represents the algebraic combination20
of the toxicity metric with all exposure variables except C. 21

22
Presently, there is considerable debate in the field of probabilistic risk assessment about the23

appropriateness of backcalculation.  Some investigators have claimed that using a point estimate for risk24
and deriving a distribution for concentration via backcalculation is an appropriate technique (Stern, 1994;25
Burmaster et al., 1995; Bowers, 1997).  In this view, the percentiles of the concentration distribution26
resulting from backcalculation mirror the percentiles of the risk distribution.  Said another way, if the PRG27
is identified from the (1.0 - ") percentile of the cumulative distribution for risk (forward calculation),28
where " is p(Risk > target risk level), then PRG corresponds with the (") percentile of the cumulative29
distribution for concentration (backcalculation).  30

31
For example, assume C represents a 95% UCL of 100 ppm, " = 0.03, and the target Risk is 1x10-6. 32

Equation 7-1 yields a distribution for risk in which there is a 97 percent (i.e., 1 - ") probability that risk is33
no greater than 1x10-6 given a 95% UCL of 100 ppm.  Similarly, Equation 7-2 yields a distribution for34
concentration in which there is a 3 percent probability that a value less than the 100 ppm is needed to yield35
a target risk of 1x10-6.  This correspondence between Equations 7-1 and 7-2 is reliable only when both the36
concentration term and the risk are characterized by point estimates.37

38
The correspondence between the output distributions from the forward and backward equations is39

maintained even for more complex models involving multiple exposure media.  Equation 7-3 is an40
extension of Equation 7-2 whereby PRG is calculated for one exposure medium (C1), but risk is a function41
of exposure to a contaminant in three media.  Note that the concentration terms for the additional42
exposure media (C2, C3) must be expressed as point estimates rather than distributions (for reasons43
described below).44

45
46
47
48
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There are significant limitations in the use of backcalculation in PRA (Ferson, 1996).  When either 1
concentration or risk is characterized by a distribution, instead of point estimates, terms in the risk equation2
can not be algebraically rearranged (Burmaster et al., 1995; Ferson, 1996).  The difficulty for PRA arises3
because each risk estimate from a Monte Carlo analysis that uses the familiar “forward-facing” risk4
equation represents a combination of random values selected from the input distributions.  Therefore, the5
output can be considered conditional on all of the inputs.  Rearranging the risk equation does not maintain6
the same conditional probabilities; therefore, the distribution for risk estimated as a function of the7
distribution for concentration in Equation 7-1 does not return the same distribution for concentration when8
applied in Equation 7-2.  In addition, the correlations of the inputs to the risk equation may not be known,9
and the inputs may not be independent.  10

11
Another difficulty with the backcalculation approach is that it provides a limited characterization of12

the post-remediation concentrations.  Concentrations remaining on site after remedial activities may need13
to satisfy more than one regulatory constraint.  For example, the average or 95% UCL concentration14
within an exposure unit may need to be less than a level based on chronic toxicity or cancer and15
simultaneously, the RAL concentration may need be less than a level based on acute toxicity.  16

17
Because the backcalculation approach does not specify a RAL, additional calculations would be18

needed to evaluate multiple health endpoints.  Backcalculation methods by themselves do not provide19
sufficient information to address concerns about acute toxicity.  In general, acute toxic effects from high20
exposure (e.g., children with pica behavior for soil) at the RAL should be considered for all chemicals. 21
Acute toxicity is discussed further in Section 7.3.2.22

23
In general, while backcalculation methods may be recommended for some sites, risk assessors should24

be familiar with their limitations.  Because of these limitations, this guidance recommends iterative25
forward calculations as a method for calculating PRGs.  Iterative approaches are generally more flexible26
than backcalculations and can provide more information for making remedial decisions.27

28
7.3.2 ITERATIVE METHODS29

30
EPA recommends iterative simulations as a general approach for calculating PRGs from probabilistic31

risk assessments.  The simplest method involves calculating risk with the “forward-facing” equation32
(Equation 7-1) a number of times (iteratively).  With each iteration, a different estimate of the 95% UCL33
is used until the risks are acceptable.  This iterative method has also been called the “repeated runs”34
method.  Computer software is commercially available to facilitate iterative calculations (e.g., EXCEL’s35
Solver Routine), although often iterative calculations can be performed by simply using a systematic trial-36
and-error approach.  This method will yield the same result as a backcalculation approach, and provides a37
probability distribution for risk that can be used in the risk communication process (Chapter 8).  In38
addition, unlike the backcalculation approach, a probability distribution can be used to characterize EPC39
(see Appendix E).40

41
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7.3.2.1 ITERATIVE TRUNCATION1
2

The iterative truncation method involves truncating the higher values in the sample of concentration3
measurements, developing a new “truncated”, or post-remediation concentration term, and calculating risk4
with the “forward-facing” equation (Equation 7-1) to determine if the risks are acceptable.  With each5
iteration, a different RAL concentration is specified and the EPC is recalculated until the risk distribution6
yields risk estimates at or below a level of concern. 7

8
Iterative truncation may not be appropriate9

for every site.  Criteria for this method are10
presented in Exhibit 7-3.  To some extent,11
potential limitations highlighted by these criteria12
may also introduce uncertainty in point estimates13
of the EPC that are based on the 95% UCL.  For14
example, if the sample size is too small and the15
data are highly skewed, the 95% UCL may16
exceed the maximum detected concentration. 17
Similarly, certain environmental sampling18
approaches may introduce bias in the estimate of19
the 95% UCL.  Of course, both point estimate20
and probabilistic methods are sensitive to poor21
site characterization.22

23
The iterative truncation method is easiest to24

think about with regard to soil cleanup when25
contaminated soil is removed and replaced with26
clean fill dirt.  This replacement would reduce27
both the mean and 95% UCL.  In the example28
given in Chapter 4 for the hypothetical wood29
treatment facility (see Section 4.4.8), an30
acceptable 95% UCL was defined as an EPC31
that yielded a 97th percentile risk of no greater32
than 1x10-5.  When a sufficient portion of the33
areas with high concentrations has been34
removed, the resulting post-remediation risks will35
fall within the acceptable range.  Under these36
assumptions, the truncation point (i.e., the37
concentration above which removal occurred) is38
a true remediation action level.  Post-remediation39
sampling can confirm that the concentration term40
used in the risk assessment adequately represents41
conditions following site remediation (see Section42
7.4 on Measurement of Attainment).43

44
Because PRGs determined from iterative45

truncation are easiest to visualize for46
contaminated soil, the discussion in the next47
several paragraphs will be based on soil48

EXHIBIT 7-3

CRITERIA FOR ITERATIVE TRUNCATION

1. Sample size (n) is sufficient. Small sample
sizes may preclude developing reliable
estimates of uncertainty in the concentration
term.  The risk assessor should determine
that n is sufficient to produce a distribution
for concentration that is representative of
site conditions.

2. Concentration distribution is not highly
skewed. A highly skewed distribution may
yield unreliable estimates of uncertainty,
especially for small sample sizes.

3. Sampling design yields a representative
distribution of measurements within the
exposure unit.  Simple random sampling
may fail to represent a patchy spatial
distribution of contaminants. Similarly,
hotspot (e.g., cluster) sampling may fail to
represent random movement of receptors. 
To evaluate potential biases in sampling,
analyses with both standard statistical
methods and geostatistical methods may be
required.

4. Assumptions about the post-remedial
distribution of concentration are
reasonable.  If these assumptions are
shown to be incorrect by subsequent
sampling events, the process for developing
a PRG may need to be repeated and
additional remedial activities may be
required.
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contamination.  Groundwater and other media are considered in later sections. Figure 7-1 shows an1
example of iterative truncation, assuming pre-remediation and post-remediation concentrations in soil can2
be adequately represented by lognormal distributions.  Table 7-1 summarizes the statistics that are3
relevant to deriving a PRG at the appropriate risk level.  The 95% UCL for the pre-remediation4
distribution of concentrations (Curve A) is 1650 ppm.  A RAL of 1400 ppm is needed to achieve a PRG5
(i.e., 95% UCL) of 900 ppm, as shown by Curve B.  A RAL of 1150 ppm is needed to achieve a6
protective PRG of 450 ppm, as shown by Curve C.7

8
Each situation is unique in terms of actual RALs and their associated PRGs.  Different RALs would9

be needed if risk were estimated from a different percentile of the uncertainty distribution for the10
concentration term (e.g., 80% UCL instead of 95% UCL).  In addition, the uncertainty distribution is11
sensitive to the variability in concentrations.  For simplicity, post-remediation concentrations in this12
example are assumed to be lognormally distributed.  The site is also assumed to be sufficiently13
characterized and all criteria in Exhibit 7-3 are met. 14

15
A more complex mixed distribution that reflects both the relatively low concentrations in backfill and16

the higher post-remediation sample concentrations may more faithfully represent the PRG (Figure 7-2). 17
A single lognormal distribution may not adequately characterize heterogeneity in contamination at a18
hazardous waste site.  In practice, a sample of measured concentrations may be represented by a19
probability distribution and a group of values below the quantitative detection limit (i.e., nondetects). 20
Generally, metals and other inorganic chemicals will be detected in the entire sample.  In the iterative21
truncation method, post-remediation concentrations can be thought of as a mixed distribution that reflects22
the weighted combination of the truncated pre-remediation concentrations and the very low23
concentrations in the soil used as clean backfill.  In the absence of site-specific data, the surrogate value24
for nondetects (e.g., half the laboratory reporting limit) may be used as an estimate of the concentration in25
clean backfill. 26

27
A post-remedial distribution for soil will consist of the lower concentrations occurring in the pre-28

remedial sampling distribution and a number of nondetect values. 29
30

Because of the more complex nature of most mixed distributions (Roeder, 1994), non-parametric31
methods for calculating the 95% UCL of the arithmetic mean (e.g., bootstrap resampling) may be32
appropriate (U.S. EPA, 1997).  Of course, sampling results from surface soil generally should not be33
averaged with those from subsurface soil unless appropriate for the specific exposure scenario being34
considered (e.g., excavation worker). 35

36
For a number of chemicals, acute toxic effects from high exposure (e.g., children with pica behavior37

for soil) at the RAL should also be considered.  In the absence of Agency guidance on levels that protect38
against acute toxicity, a toxicologist should be consulted regarding the RALs.  EPA anticipates that future39
guidance will need to be issued regarding acute toxicity, cleanup strategies, and the RAL.40
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Table 7-1 .  Summary statistics for hypothetical example shown in Figure 7-1.1

Lognormal2
Distribution3

Remediation
Action Level

(ppm)

PRG = 95% UCL
(ppm)

Hazard Index
(hypothetical)

Curve A4 none (+ 4) 1650 3.7

Curve B5 1400* 900 2.0

Curve C6 1150* 450 1.0
* Imposing a RAL is equivalent to specifying the high-end truncation limit for the lognormal7
distribution.8

Figure 7-1.  Hypothetical examples of distributions of concentration associated with remediation
action level (RAL) truncation points.  Curve A is the pre-remediation distribution, curve B is the post-
remediation distribution with a RAL of 1400 ppm, and curve C is the post-remediation distribution with
a RAL of 1150 ppm.  The EPC and both PRGs are represented by the 95% UCL for the arithmetic
mean of their respective distributions.  A RAL of 1400 ppm yields a 95% UCL of 900 ppm (PRGB),
whereas a RAL of 1150 ppm yields a 95% UCL of 450 ppm (PRGC).  Reducing the RAL by 250 ppm
results in a 50% reduction in the 95%UCL and corresponding HI (Table 7-1).  Each hypothetical
distribution represents a truncated lognormal distribution for purposes of illustration; in practice, a more
likely scenario would be a mixed, bimodal distribution that represents a combination of the truncated
pre-remediation distribution and the relatively low concentration in backfill (Figure 7-2).
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Figure 7-2.  Hypothetical example of a mixed, bimodal distribution that represents a combination of
the pre-remediation distribution truncated at an remediation action level of 1400 ppm, and a distribution
for backfill soil with relatively low concentrations.
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7.3.2.2 ITERATIVE TRUNCATION PRGS FOR CONTAMINATED SOIL1
2

At some sites, cleanup levels may be achieved by actual removal or treatment of only a portion of the3
soil on site.  This may reflect a variety of remediation strategies, including the decision to distinguish4
between a remediation unit and an exposure unit (Section 7.2, General Concepts about PRGs), or a5
decision to employ multiple remediation technologies.  For example, some soil may be left in place while6
soil in other areas of the site is removed or treated via soil vapor extraction, biological land farming, or7
some other remedial technology.  At some sites, all of the soil may need to be removed or treated.  In8
general, treatment or removal of the more heavily contaminated soil is expected to reduce site risks to9
below levels of concern.  An evaluation of remedial action objectives should be based on confirmation10
sampling (Section 7.4, Measures of Attainment).11

12
7.3.2.3 ITERATIVE TRUNCATION PRGS FOR GROUNDWATER       13

14
For some chemicals encountered at hazardous waste sites, chemical-specific applicable or relevant15

and appropriate requirements (ARARs) may exist.  ARARs are often PRGs and, if they meet the16
requirements of the NCP (U.S. EPA, 1990) for protectiveness, ARARs may be selected as site-specific17
cleanup levels.  For PRGs and cleanup levels that are based on ARARs, risk-based approaches for18
developing PRGs may not be appropriate.  This is especially true of ARARs that are applied as RALs;19
site concentrations would be compared to the ARAR, rather than a truncation level needed to achieve an20
acceptable risk distribution (see Figure 7-1).  21

22
L For groundwater contamination, ARARs should be applied as remediation action levels if23

they are protective.24
 25
For cases in which an ARAR may not be protective, risk-based levels generally should be developed in26
accordance with the NCP (U.S. EPA, 1990).  27

28
Groundwater is not a static medium.  In addition, receptors contact groundwater at specific and29

unchanging locations (e.g., wellheads).  Often, a single well can be considered the exposure unit when30
considering either the residential or industrial/occupational scenarios.  There is considerable uncertainty31
about the fate and transport of chemicals in groundwater over time.  Ideally, the risk assessment would32
focus on individuals who may be exposed at locations nearest to the center of the contaminant plume,33
where concentrations are likely to be highest (Freeze and Cherry, 1979; Sposito, Jury, and Gupta, 1986). 34
Point estimates or probability distributions for this concentration term generally should reflect uncertainty35
in the long-term arithmetic mean concentration rather than variability.  A microexposure event (MEE)36
modeling approach may be appropriate for simulating short-term changes in exposure corresponding to37
temporal and spatial variability of concentrations at a wellhead (e.g., seasonal fluctuations in the water38
table).  Examples of MEE approaches are discussed in Appendix E.  When using an MEE approach, risk39
assessors may explore different time steps for simulating short term exposure events; however, care40
should be taken to use an averaging time that is relevant to the toxicity metric (i.e., short term or long term41
toxicity).42

43
Because of the movement of groundwater and the necessity of sampling the medium at fixed44

locations, identifying a meaningful RAL needed to achieve a given post-remediation 95% UCL is difficult. 45
For PRA, repeated 1-D MCA simulations of the probabilistic model may be performed using point46
estimates from a range (or distribution) of values that represent uncertainty in the concentration term.  In47
addition, the distribution representing uncertainty in the mean concentration may be combined with48
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distributions for uncertainty in other exposure variables using 2-D MCA.  A PRG is generally the value1
that yields an acceptable risk for the percentile of the risk distribution chosen to represent the RME2
individual.  3

4
7.3.2.4 ITERATIVE TRUNCATION PRGS FOR OTHER CONTAMINATED MEDIA 5

6
Iterative truncation techniques are generally applied to solid media.  At some sites, sediment may be7

considered a fluid medium.  For example, in a harbor with constant boat traffic, sediment may be8
resuspended by waves, changing tides, or beach erosion.  9

10
The development of PRGs for surface water is also difficult with iterative truncation.  For fluid media11

(like groundwater or surface water), repeated simulations of the PRA model can be performed using a12
range of values to determine a PRG with acceptable risk at the RME percentile.13

14
Cleanup levels for fish tissue are derived in much the same way as for soil and groundwater.  The15

exposure unit, in this case, is the area where the angler population, or ecological receptor population,16
harvests fish.  However, in risk assessments that include a fish ingestion exposure pathway, there is much17
uncertainty about the true EPC.  Concentrations may be affected by many factors, including changes in18
the fish population and changes in fish preferences, which may be difficult to address in these risk19
assessments.  The choice of fish species consumed by a given individual will also affect the concentration20
term.21

22
Fish population studies and fate and transport considerations of the contaminants may indicate if and23

when a fish population will reach a calculated cleanup level.  For many sites, it may be difficult to obtain24
this level of site-specific data within the resource and time constraints of the risk assessment.  Although25
remediation may not immediately reduce contaminant concentrations in fish, the determination of a26
cleanup level can serve as a target for any future decline in concentrations.  27

28
7.4 MEASUREMENT OF ATTAINMENT29

30
The NCP (U.S. EPA, 1990) mandates continued monitoring for groundwater cleanups to ensure31

attainment of the remedial action objectives.  In addition, it is common practice among remedial project32
managers to conduct confirmation sampling after completing a remedy for soil contamination.  For soil33
contamination, PRGs and RALs are developed as part of the cleanup strategy.  However, completion of34
the remedial action according to this strategy does not necessarily mean that risks within exposure units at35
the site have been reduced to levels specified in the Record of Decision (ROD).  Confirmation sampling36
following cleanup activities is highly recommended to ensure that any contamination left on site does not37
pose an unacceptable risk.38

39
L If confirmation sampling indicates insufficient risk reduction, a more40

extensive remediation effort will be needed.41
42

Although deciding to perform post-remedial confirmation sampling is the risk manager’s task, this43
guidance strongly recommends confirmation sampling to determine whether or not the remedial action has44
been successful.  For post-remediation sampling, the Data Quality Objectives process should generally be45
followed.  If the post-remediation risk associated with the confirmation sample indicates risk exceeds a46
level of concern, then additional remediation may be warranted.  47

48
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Regarding soil, when only a portion of the contaminated soil within an exposure unit has been1
removed or treated, both the confirmation sample and the RI samples from unremediated locations should2
generally be used in a post-remediation risk calculation to ensure that the remedial action objectives have3
been met.  The calculation of post-remediation EPC (using the confirmation sample and a portion of the4
RI sample) is conceptually similar to the EPC calculation in the baseline risk assessment. 5

6
7.5 CHOOSING A CONCENTRATION TO BE A PRG7

8
As with point estimate risk assessments, the goal in PRA generally should be to ensure that the post-9

remediation risk to the RME individual is at or below an acceptable level (e.g., cancer risk of 10-6 , hazard10
index of 1).  For a 1-D MCA, the risk level of concern will typically be selected a priori as a percentile11
of the risk distribution.  For example, a risk manager may wish to identify the PRG that corresponds with12
a 95th percentile risk of 1x10-6.  In general, this RME percentile should be selected from the high-end of13
the probability distribution for risk, between the 90th and 99.9th percentiles.  As discussed in Chapter 1, the14
95th percentile of the risk distribution is generally the starting point for selecting a percentile to represent15
the RME.  Chapter 4 (Section 4.4) presents a series of risk assessment and site-specific factors that may16
guide the risk management decision to select a higher or lower percentile.  17

18
PRA may also be used to quantify the uncertainty in the risk estimates corresponding with the19

percentile range for the RME (i.e., 90th to 99.9th percentile).  If there is great uncertainty in the risk20
estimate corresponding with the percentile chosen to represent the RME, this may support a decision to21
reject the choice in favor of a percentile higher in the RME range.  In contrast, relatively low uncertainty22
in risk estimates in the upper tail of the risk distribution may support a selection of a lower RME23
percentile.  Quantifying uncertainty in risk estimates provides risk managers with greater flexibility to24
weigh the various options for remedial action. 25

26
Figure 7-3 presents hypothetical results of 2-D MCA simulations in which both variability and27

uncertainty were characterized for multiple exposure variables.  The CDFs for the risk distribution are28
given along with the 90% confidence interval (CI) for the CDF, as summarized in Table 7-2.  For this29
example, assume 1x10-6 is the risk level of concern.  The top panel shows the 95th percentile risk slightly30
exceeds 1x10-6, with a narrow 90% CI [9.8x10-7, 1.3x10-6].  These results suggest that the contaminant31
concentrations would need to be reduced to achieve an acceptable PRG.  The manager may choose a32
different percentile to represent the RME depending on site-specific information.  The risk manager’s33
choice of percentile would be supported by the relatively low uncertainty in the risk estimates, indicated34
by the narrow confidence interval.  35

36
In contrast, the bottom panel shows a cumulative risk distribution with a relatively wide confidence37

interval.  The 90% CI spans an order of magnitude for risks in the tail of the distribution (> 90th38
percentile), indicating high uncertainty in the risk estimates.  For example, the 90% CI for the 95th39
percentile is [1.2x10-6, 1.4x10-5].  This high uncertainty, together with site-specific information, might40
support a decision to choose a higher percentile to represent the RME.  For example, at the 98th41
percentile, there is a 90% probability that the risk is between 1.9x10-6 and 2.1x10-5.   In general, as the42
percentile of the risk distribution representing the RME is increased, a lower PRG is needed to achieve a43
risk level of concern with high confidence.44
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Table 7-2.  Results of 2-D MCA simulations shown in Figure 7-3 showing1
90% CI [95% LCL, 95% UCL] for selected percentiles of the risk distribution.2

Percentile3
of CDF 4
for Risk5

Fig. 7-2 Top Graph Fig. 7-2 Bottom Graph

95% LCL 95% UCL 95% LCL 95% UCL

90th6 7.3x10-7 9.5x10-7 9.5x10-7 1.0x10-6

95th7 9.8x10-7 1.3x10-6 1.2x10-6 1.4x10-5

96th8 1.0x10-6 1.4x10-6 1.4x10-6 1.6x10-5

97th9 1.2x10-6 1.6x10-6 1.6x10-6 1.8x10-5

98th10 1.4x10-6 1.9x10-6 1.9x10-6 2.1x10-5

11
12

7.6 CALCULATING MEDIA-SPECIFIC PRGS FROM PROBABILISTIC ANALYSIS13
14

Whatever medium is considered in the development of PRGs, the risk assessor should keep in mind15
that the PRG comprises both an average and a RAL that embody aspects of both the spatial distribution16
of contamination and the movement of the receptor and possibly the contaminated medium within the17
exposure unit.  Table 7-3 provides examples of sources of variability in the concentration term based on18
both the contamination in selected exposure media (soil, groundwater, and fish) and the receptor.19

20
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Figure 7-3.  Hypothetical examples of 2-D MCA results showing the CDFs for risk.  Surrounding
each CDF are two confidence limits corresponding with the 5th and 95th percentiles of the distribution
for uncertainty.  The graphs display only the upper portion of the risk distribution because risk
managers should generally use the RME range from the 90th to 99.9th percentiles as a basis for their
decisions.  This RME range corresponds to the range of 0.9 to 0.999 on the y-axis.  In the top panel,
the 90% CI for the risk distribution is narrow, which supports the risk manager’s choice of the
percentile to represent the RME.  In the bottom panel, the 90% CI is wide, which may support the
decision to choose a higher percentile to represent the RME.  In the bottom panel, the lower
confidence limit at the 98th percentile is slightly greater than 1x10-6.  Note the scale of risk on the x-
axis is much larger in the bottom panel.   An RPM may consider similar information for non-cancer hazards.
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Table 7-3 .  Examples of sources of variability in the concentration term for selected exposure media.1

Factor2 Soil Groundwater Fish

Temporal3
Variability4

Contaminant ! none, if contaminant
source is inactive

! aerial deposition from
ongoing source
emissions affected
by wind patterns

! degradation over
time

! volatilization
! migration to

groundwater
! radioactive growth

and decay

! seasonal fluctuation
in groundwater
table

! migration of
contaminant plume

! natural attenuation

! seasonal changes
in species
availability

! bioconcentration
! longterm changes

in population
dynamics

! fish tissue
concentrations
linked to temporal
variability in water
and sediment
concentrations

! physical and
chemical processes
that change
concentrations

Receptor ! non-random
movement
throughout exposure
unit

! none, fixed location
at specific wellhead

! changes in well
location over time

! dietary preferences
for fish species

! cooking practices

Spatial5
Variability6

Contaminant ! heterogeneity over a
small area and with
depth

! cluster sampling to
identify hotspots as
opposed to random
sampling that more
closely estimates the
receptor’s
concentration

! migration of
contaminant plume,
based on
hydrogeology and
source emissions
(e.g., bulk flow or
continuous source)

! migration of fish
! changes in fish

population
structure

Receptor ! random movement
throughout exposure
unit

! daily activity
patterns involve
multiple exposure
units

! none, fixed location
at specific wellhead

! changes in well
location over time

! change in
recreational habits,
areas fished

7
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CHAPTER 81

2

COMMUNICATING RISKS AND UNCERTAINTIES IN 3

PROBABILISTIC RISK ASSESSMENTS4
5

8.0 INTRODUCTION6
7

EPA has developed guidance on the role of the community in the Superfund process, Risk8
Assessment Guidance for Superfund: Vol. 1 - Human Health Evaluation Manual, Supplement to9
Part A: Community Involvement in Superfund Risk Assessments (U.S. EPA, 1999).  This supplement10
to Risk Assessment Guidance for Superfund (RAGS) Vol. 1 Part A was developed to improve11
community involvement in the Superfund risk assessment process.  It should serve as a primary12
community involvement resource for risk assessors, along with the Superfund Community Involvement13
Handbook and Toolkit (U.S. EPA, 1998).  The Community Involvement in Superfund Risk14
Assessments specifically:15

16
• provides suggestions for how Superfund staff and community members can work together17

during the early stages of Superfund remedial investigation and later cleanup;18
19

• identifies where, within the framework of the human health risk assessment methodology,20
community input can augment and improve EPA’s estimates of exposure and risk;21

22
• recommends questions the site team (risk assessor, remedial project manager (RPM), and23

community involvement coordinator) should ask the community; and24
25

• illustrates why community involvement is valuable during the human health risk assessment at26
Superfund sites.27

28
This chapter provides additional guidance and suggestions to deal with risk communication issues that29
arise during a probabilistic risk assessment (PRA).  It highlights the appropriate level of public30
involvement and principle risk communication skills needed to effectively communicate risk information31
from a PRA to various interested parties at a Superfund site.  Section 8.2 discusses additional activities32
for communicating PRA information, while Sections 8.3 and 8.4 provide guidance on specific techniques33
for communicating information.  The success of risk communication efforts will depend on the extent to34
which the communication strategy addresses the needs of a diverse audience, with different perceptions35
of risk and uncertainty (Section 8.5), and the degree of trust and credibility that is established from the36
onset (Section 8.6). 37

38
8.1 EARLY INVOLVEMENT AND ENGAGEMENT OF STAKEHOLDERS39

40
There are many stakeholders in a risk assessment (see Chapter 1, Section 1.6).  It is generally41

important to involve and engage all stakeholders early in the decision-making process.  Early42
involvement activities should be tailored to the needs of the community and be described in the43
communications strategy for the site.  The Community Involvement Coordinator (CIC) for the site44
coordinates these first steps.  Examples of outreach activities include giving oral presentations and poster45
sessions at public meetings, coordinating small group meetings or focused workshops, conducting46
interviews with community members to identify concerns, and disseminating fact sheets.47
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Ideally, the public and other stakeholders will be involved in the decision-making process long before1
any PRA is considered.  If the community has not been previously involved, efforts should be made, in2
coordination with the CIC, to identify and communicate with the appropriate individuals in the community3
prior to the Agency’s receipt of the PRA work plan.  The public and stakeholders should provide input to4
the work plan for a PRA (Covello and Allen, 1988) (see Chapter 1).5

6
8.2 COMMUNICATION AND PRESENTATION7

8
8.2.1 COMMUNICATION OF PRA TO CONCERNED CITIZENS, OTHER STAKEHOLDERS , AND9

M ANAGERS : AN OVERVIEW10
11

When a decision is made to conduct a PRA, an important step generally is to work with citizens to12
plan an educational process that will help them understand the principles of PRA and its application in13
the Superfund process (see Chapter 1).  This discussion may be best presented in an informal setting such14
as a public availability session.  Because of the complex nature of quantitative uncertainty analysis and15
PRA, a small group meeting may be a good forum in which to discuss issues and facilitate an exchange of16
ideas.  Such  meetings provide the foundation for building trust and credibility (see Section 8.6).17

18
In general, it is important to identify whether a Community Advisory Group (CAG) has been formed. 19

The purpose of a Community Advisory Group is to provide a public forum for community members to20
present and discuss their needs and concerns related to the Superfund decision-making process.  The21
Community Involvement Coordinator is an important member of the team and may coordinate22
communication plans and hand-out materials, and identify site-specific organizational issues.23

24
A number of resources may be available to the community for help in understanding technical25

material.  The Technical Assistance Grant (TAG) Program provides funds for qualified citizens’ groups26
affected by a Superfund site to hire independent technical advisors to help interpret and comment on site-27
related information.  Another program, Technical Outreach Services for communities (TOSC),  uses28
university educational and technical resources to help Communities understand the technical issues29
involving the hazardous waste sites in their communities.  This is a no-cost, non-advocate technical30
assistance program supported by the Hazardous Substance Research Centers.31

32
The initial community meeting can serve to establish a strong rapport and facilitate the exchange of33

both policy and technical information needed to support a PRA.  This information may include policy34
decisions associated with both point estimate and probabilistic approaches, as well as technical detail35
regarding the conceptual exposure model and the selection of distributions.  This exchange may increase36
certainty about the assumptions made in the risk assessment.  For example, the community may be able to37
offer insights regarding site-specific activities and sources of data not readily available to the assessor. 38
This type of discussion allows for the free exchange of information with the public and sets the stage for39
future discussions.  It is important that an appropriate level of detail is presented at the first meeting. 40
Instead of overloading the audience with information, it is generally better to coordinate several meetings41
so that more complex policy and technical concepts can be broken down into smaller discussion topics.42

43
The dialogue with the stakeholders may continue throughout the remedial investigation process with44

special attempts to involve the stakeholders in decisions concerning the PRA (see Chapter 1). 45
Demonstrations using portable computers can be an effective tool for showing how the results of the46
PRA may change with changes in modeling assumptions.  Such demonstrations can be included as part of47
the communication strategy and can be tailored to meet the community’s needs.48
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The tiered approach for PRA presented in Chapter 1 (Figure 1-4) encourages risk assessors and risk1
managers to participate in discussions early in the process of developing point estimate and probabilistic2
approaches.  If a decision is made to perform a PRA, a continuing dialogue will be useful to evaluate3
interim results of the PRA and determine if additional activities are warranted (e.g., data collection,4
further modeling).  These on-going results will help assure that risk managers are aware of the details of5
the PRA analysis and are comfortable with the material that will be shared with the community and senior6
managers. 7

8
8.2.2 STEPS FOR COMMUNICATION OF THE RESULTS OF THE PROBABILISTIC RISK ANALYSIS 9

10
The results of a PRA will vary depending on11

the nature and extent of the assessment12
performed.  For example, PRAs may include an13
analysis of variability only, uncertainty only, or14
both variability and uncertainty.  Some analyses15
may involve simulations to evaluate temporal16
variability (e.g., Microexposure Event analysis)17
and spatial variability (e.g., geostatistics).  The18
challenge for presenters is to identify the critical19
information and level of detail to be presented20
to various audiences that may be involved in21
the Superfund decision making process (i.e.,22
senior risk managers, concerned citizens,23
congressional staff, responsible parties, and other24
users of the information) (see Exhibit 1-6).25

26
The 6-step process described below (and27

summarized in Exhibit 8-1) may be repeated28
many times during the performance of a PRA.  For communication purposes, a PRA will involve more29
interaction with stakeholders than a simpler point estimate risk analysis.30

31
1. Identify the audience32

33
The first step is to identify the audience that is interested in the information.  The format and depth of34

the presentation of PRA information will vary according to the audience; the audience may change35
depending on the tier of the PRA (see Chapter 1) and the decisions being made.  Accordingly, the36
materials communicated should be tailored to the specific needs of each of those audiences.37

38
2. Identify the needs of the audience39

40
The second step is to identify the information from the point estimate risk analysis and the probabilistic41

analysis that will address the needs of the audience (see Section 8.3).  The significant information and the42
level of detail will, of course, vary depending on the audience (i.e., manager, assessor, peer-reviewers,43
responsible party, or public).  This information may include a discussion of the sources of data used in the44
PRA, the most critical variables in the PRA identified during the sensitivity analysis, statistics and the45
nature of distributions, or a consideration of uncertainty (see also Section 8.5).  The risk assessor should46
select the key information and discuss the significance of this information based on the intended audience.47

48

EXHIBIT 8-1

6-STEP PROCESS FOR 

COMMUNICATING PRA RESULTS

1. Identify the audience
2. Identify the needs of the audience
3. Develop a communication plan
4. Practice to assure understandability
5. Post-meeting review of presentation and

community feedback
6. Update information as needed for future

assessments and presentations
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3. Develop a communication plan1
2

The third step is to develop a plan to3
communicate the significant information in an4
easily understandable format (e.g., using graphics)5
(Exhibit 8-2).  Adequate planning in the6
presentation of PRA information is essential.  A7
thorough understanding of the design and results8
of the PRA will help to place the information in9
proper context and understandable format10
(Covello and Allen, 1988).  Even more important11
than communicating the appropriate technical12
details, however, assessors and managers should13
clearly identify the main messages to be14
presented.  Pilot testing a presentation with co-15
workers who are unfamiliar with the site can16
assure that the appropriate messages are being conveyed.  Section 8.4 provides examples of graphics that17
may be useful in presentations of PRA. Handouts, glossaries, and other materials may complement a18
presentation and provide information for discussion following the meetings (see Section 8.4).19

20
4. Practice to assure understandability21

22
The fourth step is to practice the presentation to assure that the information is understandable.  Staff23

from communication groups or public information offices within the EPA Regional Offices may help to24
determine whether or not the presentation addresses the needs of various audiences.25

26
5. Post-meeting review and of presentation and community feedback27

28
The fifth step occurs after the presentation.  In addition to receiving feedback on the materials and29

information used in the presentation, the presenter will likely develop a sense for how well the main30
messages and specific technical issues were communicated.  31

32
6. Update information as appropriate for future assessments and presentations33

34
Shortly after the meeting or briefing, modifications should be made to the materials for future35

presentations where appropriate.  In addition, if information is obtained that is relevant to the risk36
assessment, this information may be included in a subsequent analysis, and the process would be37
repeated.38

39
8.3 COMMUNICATING DIFFERENCES BETWEEN POINT ESTIMATE AND PROBABILISTIC RISK40

ASSESSMENT41
42

One method for effectively explaining the probabilistic approach to quantifying variability and43
uncertainty is to employ comparisons to the more easily understood point estimate methodology.  The44
communicator may focus on a specific input variable, such as drinking water intake, and first explain that45
with the point estimate methodology, a single value such as 2 liters per day is used to represent the entire46
population.  However, with probabilistic analysis, those individuals consuming 1 liter per day, as well as47
those who consume 3 liters per day, are represented in the calculation.  PRA can be used to relate such48

EXHIBIT 8-2

DEVELOPING 

UNDERSTANDABLE MATERIAL

• Identify main messages
• Place information in appropriate context
• Use clear formats
• Use examples and graphs
• Provide handouts and glossaries
• Present information with a minimum of

jargon
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sources of variability to the overall variability in risk.  The presenter may use a concrete example of a1
distribution by asking the audience to identify their own water consumption level on the distribution.  2

3
When communicating results from point estimate and PRA models, an important concept to keep in4

mind is that both methods yield estimates of true, but unknown health risks.  It is common to perceive5
output from quantitative models as representing the “truth”, without appreciating the uncertainties in the6
estimates.  One challenge in presenting PRA results is to determine the most effective way to7
communicate sources of uncertainty without undermining the trust and credibility of the assessment (see8
Section 8.6).  Using the above example, concepts associated with uncertainty can be introduced by asking9
the audience if their estimate of water consumption on a specific day would be equal to their average10
daily consumption rate over a 1-year period.  This example highlights a common source of uncertainty in11
exposure data (i.e., using short-term survey data to estimate long-term behavior).  Section 8.5 discusses12
different perceptions of uncertainty.  13

14
The basic concepts of PRAs described in Chapter 1 may be used in developing presentations.  Tables15

1-1 and 1-2 in Chapter 1 summarize some of the advantages and disadvantages of point estimates and16
probabilistic approaches that should be considered when evaluating differences in the risk estimates of the17
two approaches.  For example, point estimates of risk do not specify the proportion of the population that18
may experience unacceptable risks.  In some cases, this proportion could be greater than 10%, or in19
others, less than 0.01%.  In contrast, with probabilistic risk methods, statements can be made regarding20
both the probability of exceeding a target risk, and the level of confidence in the risk estimates. 21
Understanding the output distribution of risks and the sensitivity analysis (Chapter 2) should help to explain22
the results of the assessment and address the concerns of the audience.  Consider a risk management23
decision in which a PRG is determined from an RME risk associated with the 90th percentile of the risk24
distribution (i.e., the low end of the RME range).  Results from the PRA used to support this decision25
might include extensive site characterization, site-specific data on sensitive exposure variables, and26
relatively narrow confidence limits on the arithmetic mean concentration. 27

28
When summarizing results of PRA, point estimates of risk generally should be presented in the same29

graphs and tables.  It may be informative to note where on the risk distribution each of the point estimates30
lies.  By understanding the assumptions regarding the inputs and modeling approaches used to derive point31
estimates and probabilistic estimates of risk, a communicator will be better prepared to explain significant32
differences in risk estimates that may occur.  Special emphasis should be given to the model and33
parameter assumptions that have the most influence on the risk estimates, as determined from the34
sensitivity analysis.35

36
8.4 GRAPHICAL PRESENTATION OF PRA RESULTS TO VARIOUS AUDIENCES37

38
As the old adage, “A picture is worth a thousand words,” implies, graphics can be an effective tool39

for presenting information.  A graphic can be most easily understood by a diverse audience when it40
conveys a single message.  In general, each graphic should be developed and modified depending on the41
type of presentation and audience. 42

43
L The key is to plan how the information will be presented, select a small number of44

appropriate messages, and not overwhelm the audience with detail.45
46

Points to consider when developing graphics for public meetings, senior staff, and the press are presented47
below.48
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8.4.1 PUBLIC M EETING1
2

For a public availability session (or meeting), care should be taken to assure that the graphics are of3
appropriate size and the lettering is easy to read.  For example, a graphic on an 8 ½ x 11 inch sheet of4
paper would not be easily seen from the back of a large auditorium.  It may be appropriate to present5
information using large posters, spaced so that the audience may move among them and discuss the6
posted results with the assessor or project manager.  Handouts with the graphics and a glossary of terms7
should also be used.  Avoid using slides with too much text since the information will be difficult to read8
and understand.9

10
8.4.2 SENIOR STAFF11

12
For communicating with senior risk managers, an executive summary or executive briefing may be13

more appropriate.  This presentation should highlight major findings, compare point estimate and14
probabilistic results, provide sensitivity analysis results, and state the uncertainties revealed in the PRA.  15

16
A good way to present the results of a sensitivity analysis is to use a pie chart, as in Figure 8-1A. 17

The chart shows the amount of influence a specific variable has on the final risk estimate.  The figure18
clearly shows that the soil concentration of a contaminant has the largest effect on the risk estimate, while19
the soil ingestion rate has the second largest effect. 20

21
Senior level risk managers would generally be most interested in the risk level at the 50th, the 90th, the22

95th, and the 99.9th percentiles (i.e., the variability in risk estimates).  Managers may also wish to know23
the uncertainty surrounding each of the percentiles of risk.  This uncertainty can be described in a table24
(e.g., percentiles of uncertainty in 95th percentile risk) or a graphic (e.g., box-and-whisker plots).  It is25
advisable for the risk assessor to have this information in hand.  Presenting percentiles of uncertainty26
along with percentiles of variability can require a very busy figure or table — it is best to keep things27
simple.  Figure 8-1B shows a cumulative probability plot for Hazard Quotient (HQ), using the box-and-28
whisker graphic style to show the uncertainty around selected percentiles estimates.  The box shows the29
25 % and 75% confidence interval for the percentile, whereas the whiskers show the 5% and 95%30
confidence interval.  The box-and-whisker plot is simple to produce, conveys information about the skew31
and width of the confidence interval, and is easier to interpret for less technical audiences.  In general,32
box-and-whisker plots are useful for summarizing results from multiple Monte Carlo simulations (e.g.,33
results of 2-dimensional Monte Carlo analysis simulations [Appendix E] used to propagate uncertainty in34
parameters of probability distributions through the model).  35

36
Figure 8-1B also gives the complete CDFs of HQ associated with the 5th, 50th, and 95th percentiles of37

uncertainty.  This may be a useful visual aid to accompany the box-and-whisker plots.  Probability density38
and CDFs are generally more meaningful to risk assessors and uncertainty analysts.  Alternative graphics39
may be needed to communicate uncertainty in risk estimates based on other sources of uncertainty in the40
model (e.g., use of alternative probability models for exposure variables, effect of changes in the model41
time step, application of spatial weighting to concentration data, etc.).  Additional information on42
communicating risks to senior EPA managers is given by Bloom et al. (1993).43

44
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8.4.3 PRESS RELEASES1
2

For a press briefing presentation, care should be given to identify messages and develop publication3
quality graphics with easily understood descriptions.  The risk managers generally should work with4
appropriate public information experts and senior managers to develop these materials and have adequate5
approvals before their release.6

7
8.5 PERCEPTION OF RISK AND UNCERTAINTY8

9
There are many individual differences in the way people regard the risks and hazards that are10

unavoidable in modern life.  These differences have their roots in both the technical limitations of risk11
assessment and the idiosyncrasies of the individual human mind (Slovic, 1986). The risk assessor or12
risk communicator should keep in mind the general perceptions about risk held by different groups. 13
Communications should be tailored to the audience.14

15
 The relationship between an individual's level of knowledge and perception of risk is complex.  For16
example, an individual may know nothing about the risk associated with an activity and, on the basis of a17
priori experience, judge that risk to be negligible.  Another individual may feel more threatened by his or18
her lack of knowledge and magnify the risk in his or her mind (Marris et al., 1997).19

20
The presentation of uncertainty in a risk estimate can be interpreted with vastly different conclusions21

depending on the audience.  For example, a thorough scientific account of multiple sources of uncertainty22
presented to a group of interested risk assessors and environmental scientists may be clearly understood. 23
Such a group will likely conclude that the assumptions made in the risk assessment were appropriate and24
that the results can be used with confidence as a decision support tool.25

26
In contrast, a similar scientific presentation given to the public may be misunderstood.  Citizens are27

often more concerned about the impact of a risk to their situation than the uncertainty in the risk estimate. 28
Consequently, the public is likely to react with resentment to a highly scientific presentation on29
uncertainty.  Focusing heavily on uncertainty may cause citizens to conclude that the risk must be high. 30
They may also conclude that the presenter is incompetent because he or she is not sure of anything, that31
the presenter is trying to hide something by cloaking the information in technical jargon, or that the32
presenter is intentionally avoiding the public’s issues of concern.33
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39 Figure 8-1.  This graphic is a good way to show the results of a 2-D MCA.  The top panel (A) shows

a pie chart with results of a sensitivity analysis.  The results represent the contribution to the variance
in risk based on the square of the rank correlation normalized to 100%.  Additional examples are given
in Chapters 4 (Figure 4-6) and 5.  The bottom panel (B) shows a method of presenting variability as
a cumulative distribution function and uncertainty as box plots at the 25th, 50th, and 95th percentiles of
variability.  The CDFs given by the dotted lines represent the 5th and 95th percentiles of uncertainty for
each percentile of variability. 
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1
A helpful presentation generally should incorporate the following steps: (1) present information about2

the conclusions that can be drawn from a risk assessment; (2) describe the certainty of the information3
that supports these conclusions; and (3) address the uncertainty and its implications for the conclusions. 4
Graphics help people to understand uncertainty.  It is extremely frustrating for decision-makers to receive5
detailed information on uncertainty without conclusions (Chun, 1996).6

7
8.6 TRUST AND CREDIBILITY8

9
The single most important quality a presenter can communicate to others is a sense of trust and10

credibility.  Trust and credibility is based on the individual's own integrity.  Building trust and credibility will11
serve the assessor well, whether communicating to a high-level technical audience, a risk12
manager/decision-maker who wishes to have the "big picture", or the lay public for whom the complexities13
of a risk need to be made understandable.14

15
Credibility can only be bestowed by the public through a long history of candor and the ability to16

synthesize information to address the concerns and interests of an audience.  If a presenter can explain an17
issue because he or she has insight into the topic, the presenter will gain credibility. The ability to garner18
trust and credibility comes from communicating with an audience at an appropriate level (Covello and19
Allen, 1988).20
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